RESUMO
The health risks of Decabromodiphenyl ethane (DBDPE) with its cardiovascular toxicity, liver toxicity and cytotoxicity had been generally acknowledged. However, the influence on gut microbiome and short-chain fatty acids (SCFAs) metabolism caused by DBDPE exposure remained unknown. In this study, three exposure groups (5, 50, 500 mg/L) and control group were used to investigate the effect of DBDPE by using simulator of the human intestinal microbial ecosystem (SHIME). 16S rRNA gene high-throughput sequencing illustrated that high dose DBDPE exposure increased the α-diversity of gut microbiota, while reduced the abundance of Firmicutes and Proteobacteria. In addition, the low dose (5 mg/L) DBDPE inhibited the increasing of SCFAs, but the medium and high dose (50 and 500 mg/L) DBDPE promoted the advancement, especially in ascending colon. Notably, DBDPE exposure lead a similar changing of acetic acid and butyric acid contents in different sections of the colon. This study confirmed the alternation of composition and metabolic function in gut microbial community due to DBDPE exposure, indicating an intestinal damage and appealing for more attention concentrated on the health effects of DBDPE exposure.
Assuntos
Retardadores de Chama , Microbioma Gastrointestinal , Bromobenzenos , Ecossistema , Retardadores de Chama/toxicidade , Humanos , RNA Ribossômico 16S/genéticaRESUMO
Using the field sampling and indoor soil cultivation methods, the dynamic of ginseng rhizosphere soil microbial activity and biomass with three cultivated ages was studied to provide a theory basis for illustrating mechanism of continuous cropping obstacles of ginseng. The results showed that ginseng rhizosphere soil microbial activity and biomass accumulation were inhibited observably by growing time. The soil respiration, soil cellulose decomposition and soil nitrification of ginseng rhizosphere soil microorganism were inhibited significantly (P <0.05), in contrast to the control soil uncultivated ginseng (R0). And the inhibition was gradual augmentation with the number of growing years. The soil microbial activity of 3a ginseng soil (R3) was the lowest, and its activity of soil respiration, soil cellulose decomposition, soil ammonification and soil nitrification was lower than that in R0 with 56.31%, 86.71% and 90. 53% , respectively. The soil ammonification of ginseng rhizosphere soil microbial was significantly promoted compared with R0. The promotion was improved during the early growing time, while the promotion was decreased with the number of growing years. The soil ammonification of R1, R2 and R3 were lower than that in R0 with 32.43%, 80.54% and 66.64% separately. The SMB-C and SMB-N in ginseng rhizosphere soil had a decreased tendency with the number of growing years. The SMB-C difference among 3 cultivated ages was significant, while the SMB-N was not. The SMB of R3 was the lowest. Compared with R0, the SMB-C and the SMB-N were significantly reduced 77.30% and 69.36%. It was considered by integrated analysis that the leading factor of continuous cropping obstacle in ginseng was the changes of the rhizosphere soil microbial species, number and activity as well as the micro-ecological imbalance of rhizosphere soil caused by the accumulation of ginseng rhizosphere secretions.
Assuntos
Bactérias/crescimento & desenvolvimento , Panax/microbiologia , Microbiologia do Solo , Solo/química , Agricultura , Compostos de Amônio/metabolismo , Biomassa , Celulose/metabolismo , Nitrificação , Panax/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Fatores de TempoRESUMO
Decabromodiphenyl ethane (DBDPE) as a widely used brominated flame retardant is harmful to human health due to its toxicity, including cardiovascular toxicity, reproductive toxicity, and hepatotoxicity. However, the knowledge of the long-term effects and structural and metabolic function influence on gut microbiota from DBDPE exposure remains limited. This study was mainly aimed at the gut microbiome and fecal metabolome of female rats and their offspring exposed to DBDPE in early life. 16S rRNA gene sequencing demonstrated that maternal DBDPE exposure could increase the α-diversity of gut microbiota in immature offspring while decreasing the abundance of Bifidobacterium, Clostridium, Muribaculum, Escherichia, and Lactobacillus in adult offspring. The nonmetric multidimensional scaling showed a consistency in the alternation of ß-diversity between pregnant rats and their adult offspring. Furthermore, the short-chain fatty acids produced by gut microbiota dramatically increased in adult offspring after maternal DBDPE exposure, revealing that DBDPE treatment disrupted the gut microbial compositions and altered the gut community's metabolic functions. Untargeted metabolomics identified 41 differential metabolites and seven metabolic pathways between adult offspring from various groups. Targeted metabolomic showed that maternal high dose DBDPE exposure obviously decreased the level of glutathione, taurine, and l-carnitine in their adult offspring, which verified the correlation between weight loss and amino acid metabolites. An interesting link between some gut bacteria (especially the Firmicutes) and fecal metabolites demonstrated the shifts in gut microbiota may drive the metabolic process of fecal metabolites. The current findings provide new insight into long-term effects on human health.