Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003986

RESUMO

Bacterial wilt disease is a devastating disease of crops, which leads to huge economic loss worldwide. It is hypothesized that the occurrence of bacterial wilt may be related to changes in soil chemical properties and microbial interactions. In this study, we compared the soil chemical properties and microbial network structures of a healthy soil (HS) and a bacterial wilt-susceptible soil (BWS). The contents of available nitrogen, potassium, and phosphorus and the soil pH in the BWS were significantly lower than those in the HS. BWS showed nutrient deficiency and acidification in comparison with the HS. The structure and composition of the BWS network were quite different from those of the HS network. The BWS network had fewer modules and edges and lower connectivity than the HS network. The HS network contained more interacting species, more key microorganisms, and better high-order organization and thus was more complex and stable than the BWS network. Most nodes and module memberships were unshared by the two networks, while the ones that were shared showed different topological roles. Some generalists in the HS network became specialists in the BWS network, indicating that the topological roles of microbes were changed and key microorganisms were shifted in the BWS. In summary, the composition and structure of the microbial network of the BWS were different from that of the HS. Many microbial network connections were missing in the BWS, which most likely provided conditions leading to higher rates of bacterial wilt disease.IMPORTANCE Bacterial wilt disease is caused by the pathogen Ralstonia solanacearum and is a widespread devastating soilborne disease leading to huge economic losses worldwide. The soil microbial community is crucial to the capacity of soils to suppress soilborne diseases through complex interactions. Network analysis can effectively explore these complex interactions. In this study, we used a random matrix theory (RMT)-based network approach to investigate the changes in microbial network and associated microbial interactions in a bacterial wilt-susceptible soil (BWS) in comparison to a healthy soil (HS). We found that the structure and composition of the microbial network in BWSs were quite different from those of the HS. The BWS network had fewer modules, edges, and key microorganisms and lower connectivity than the HS network. In the BWSs, apparently the topological role of microbes was changed and key microorganisms were shifted to specialists.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Concentração de Íons de Hidrogênio , Consórcios Microbianos , Filogenia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Nicotiana/microbiologia
2.
Eur J Pharmacol ; 969: 176303, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211715

RESUMO

Eldecalcitol (ED-71), a novel active form of vitamin D, shows potential in treating osteoporosis. However, its underlying mechanisms of action remain to be determined. This study aimed to investigate the effect of ED-71 on bone regeneration and to illustrate its mode of action. The in-vitro model was developed using rat primary osteoblasts cultured under high-glucose conditions, and these cells were treated with ED-71. Additionally, an in vivo model of cranial bone defects was established in type 2 diabetic rats, and ED-71 was administered by gavage. The results demonstrated that ED-71 prevented osteoblast cell death, enhanced rat primary osteoblasts' osteogenic capacity, and attenuated the overexpression of hypoxia-inducible factor 1α (HIF1α) induced by high glucose levels. Furthermore, ED-71 increased glutathione peroxidase 4 (GPX4) levels and inhibited ferroptosis in response to hyperglycemic stimulation. Notably, interference with the HIF1α activator and ferroptosis activator Erastin significantly reduced the therapeutic effects of edetate osteolysis. These findings were further tested in vivo experiments. These results suggest that ED-71 activates the HIF1α pathway in vivo and in vitro, effectively relieving the ferroptosis induced by high glucose. Significantly, ED-71 may improve osteogenic disorders caused by diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Vitamina D/análogos & derivados , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Vitamina D/metabolismo , Osteoblastos/metabolismo , Regeneração Óssea , Glucose/metabolismo
3.
Front Bioeng Biotechnol ; 10: 961535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159666

RESUMO

The biosynthesis of antifungal lipopeptides iturin and fengycin has attracted broad interest; however, there is a bottleneck in its low yield in wild strains. Because the key metabolic mechanisms in the lipopeptides synthesis pathway remain unclear, genetic engineering approaches are all ending up with a single or a few gene modifications. The aim of this study is to develop a systematic engineering approach to improve the antifungal activity and biosynthesis of iturin and fengycin in Bacillus amyloliquefaciens. First, blocking the carbon overflow metabolic pathway to increase precursor supply of the branched-chain amino acids by knockout of bdh, disrupting sporulation to extend the stage for producing antifungal lipopeptides by deletion of kinA, blocking of siderophore synthesis to enhance the availability of amino acids and fatty acids by deletion of dhbF, and increasing Spo0A∼P by deletion of rapA, could improve the antifungal activity by 24%, 10%, 13% and 18%, respectively. Second, the double knockout strain ΔbdhΔkinA, triple knockout strain ΔbdhΔkinAΔdhbF and quadruple knockout strain ΔkinAΔbdhΔdhbFΔrapA could improve the antifungal activity by 38%, 44% and 53%, respectively. Finally, overexpression of sfp in ΔkinAΔbdhΔdhbFΔrapA further increased the antifungal activity by 65%. After purifying iturin and fengycin as standards for quantitative analysis of lipopeptides, we found the iturin titer was 17.0 mg/L in the final engineered strain, which was 3.2-fold of the original strain. After fermentation optimization, the titer of iturin and fengycin reached 31.1 mg/L and 175.3 mg/L in flask, and 123.5 mg/L and 1200.8 mg/L in bioreactor. Compared to the original strain, the iturin and fengycin titer in bioreactor increased by 22.8-fold and 15.9-fold in the final engineered strain, respectively. This study may pave the way for the commercial production of green antifungal lipopeptides, and is also favorable for understanding the regulatory and biosynthetic mechanism of iturin and fengycin.

4.
ACS Omega ; 6(29): 19222-19232, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337260

RESUMO

Trilinear flow model is an effective method to reproduce the flow behavior for horizontal wells with multistage hydraulic fracture treatments in unconventional reservoirs. However, models developed so far for transient analysis have rarely considered the inflow performance of wells. This paper introduces a new composite dual-porosity trilinear flow model for the multiple-fractured horizontal well in the naturally fractured reservoirs. The analytical solution is derived under a constant rate condition for analyzing transient pressure behaviors and generating the transient inflow performance relationships (IPRs). The plots of pressure profiles with time could provide insightful information about various flow regimes that develop throughout the entire production cycle. Sensitivity analysis of pressure and pressure derivative response was also performed by varying different parameters (such as hydraulic fracture width and permeability, reservoir configurations, etc.) and by which the impacts of different parameters on the durations of regimes as well as the productivity index can be confirmed. The main outcomes obtained from this study are as follows: (1) the ability to characterize naturally fractured reservoirs using a new composite dual-porosity trilinear flow model; (2) the application of analytical solutions of transient analysis to generate transient IPR curves for different flow regimes; (3) understanding the effect of reservoir configurations, fractures, and matrix characteristics on pressure distribution, flow regime duration, and transient IPR. More specifically, the pressure drop increases and the productivity index decreases with the decrease of the hydraulic fracture conductivity and the increase of matrix permeability and the skin factor. Also, the larger hydraulic fracture spacing and drainage area result in the later onset of the pseudo-steady-state regime. (4) A comprehensive study on transient pressure behaviors and transient inflow performance can provide valuable information to characterize the multifractured complex systems as well as some insights into the production.

5.
Microbiol Res ; 231: 126373, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739260

RESUMO

Long-term continuous cropping has led to epidemic of bacterial wilt disease in Southern China. Bacterial wilt disease is caused by Ralstonia solanacearum and difficult to control. In order to control bacterial wilt, rice hull biochar was applied to soil with different doses (0, 7.5, 15, 30 and 45 t ha-1) in a field trial. After three years, the influence of biochar on soil properties, incidence of bacterial wilt and microbial community were characterized. Biochar amendment significantly suppressed bacterial wilt through changing soil chemical properties and microbial composition. Compared with control, disease incidence and index of biochar amendments (7.5, 15, 30, and 45 t ha-1) significantly decreased. Disease incidence and index of biochar amendment (15 t ha-1) were the lowest. Compared to the unamended control, contents of soil organic matter in biochar amendments (15, 30 t ha-1), available nitrogen in biochar amendment (15 t ha-1), and urease activity in biochar amendments (7.5, 15 t ha-1) significantly increased. Biochar amendments (15, 30, and 45 t ha-1) increased the relative abundances of potential beneficial bacteria (Aeromicrobium, Bacillus, Bradyrhizobium, Burkholderia, Chlorochromatium, Chthoniobacter, Corynebacterium, Geobacillus, Leptospirillum, Marisediminicola, Microvirga, Pseudoxanthomonas, Telmatobacter). Biochar amendments (7.5, 30, and 45 t ha-1) reduced the relative abundances of denitrifying bacteria (Noviherbaspirillum, Reyranella, Thermus). Biochar amendments (7.5, 15, and 45 t ha-1) significantly decreased pathogen Ralstonia abundance. Overall, application of biochar effectively controlled bacterial wilt through sequestering more carbon and nitrogen, enriching specific beneficial bacteria and decreasing pathogen abundance. This study revealed the potential of biochar in control of bacterial wilt.


Assuntos
Carvão Vegetal , Microbiota , Ralstonia solanacearum/crescimento & desenvolvimento , Solo/química , Bactérias/classificação , Bactérias/isolamento & purificação , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo
6.
Microbiol Res ; 238: 126505, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32516644

RESUMO

Bacterial wilt (BW) disease causes huge economic loss. Heretofore there is no effective way to completely control BW. Here, cover crops (pea, rapeseed, and wheat) were used to restore declining soil properties and control BW. Cover crops can increase content of soil organic matter, alkali-hydrolyzable nitrogen and enzymatic activities, as well as suppress BW. Different kinds of cover crops are distinguished in recovering different soil properties. For instance, rapeseed can inhibit BW more effectively than wheat and pea, while wheat has the best effect on increasing soil organic matter, urease, and invertase. Nevertheless, pea improves catalase better than rapeseed and wheat. Moreover, relative abundance of plant-beneficial bacteria in cover crop treatments is higher than that in the control, with a negative correlation with disease index. For example, wheat has the best effect on improving the growth of plant-beneficial bacteria, followed by rapeseed. The bacteria involved in nitrogen cycling are enriched in pea treatments. However, the relative abundance of pathogen and denitrifying bacteria in cover crop treatments is lower than that in the control, with a positive correlation with disease index. The count of bacteria genes involved in nutrients cycling, antibiotics synthesis, and biodegradation of toxic compounds in cover crop treatments is higher than that in the control. Wheat includes more these genes than rapeseed and pea. Overall, cover crops can restore declining soil properties and suppress BW by increasing soil nutrients and beneficial bacteria as well as decreasing pathogen. Among all cover crops, wheat is considered as the optimal one.


Assuntos
Produtos Agrícolas/microbiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera , Microbiologia do Solo , Solo/química , Bactérias/genética , Bactérias/isolamento & purificação , Brassica napus/microbiologia , DNA Bacteriano , Microbiota , Pisum sativum/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia
7.
ACS Omega ; 4(11): 14466-14477, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31528800

RESUMO

Tight reservoirs, as an important alternative for conventional energy resources, have been successfully exploited with the aid of hydraulic fracturing technologies. Because of the inherent ultralow permeability and porosity, tight oil reservoirs generally suffer from the effects of stress sensitivity. Both hydraulic fractures with complex geometries and a high-permeability area known as stimulated reservoir volume (SRV) may be generated by the massive hydraulic fracturing operations. All these bring huge challenges in transient pressure analysis of tight reservoirs. Up till now, although many research studies have been carried out on the transient pressure analysis of volume-fractured horizontal wells in tight reservoirs, unfortunately, there is still a lack of research studies that have taken stress sensitivity, complex fracture networks, and the SRV into consideration, simultaneously. To fill up this gap, this paper first idealizes the reservoir after hydraulic fracturing as two radial composite regions, that is, the unstimulated outer region and the inner SRV. The stress sensitivity is characterized by the variable permeability depending on the pore pressure. A linear source with consideration of the stress sensitivity in the composite reservoir is obtained by the perturbation technique, Laplace transformation, and the flow coupling of two regions. Second, the complex fracture networks are discretized into segments to capture their geometries. A semi-analytical model is finally established and validated by the comparison with previous models. On the basis of our model, six flow stages of volume-fractured horizontal well are identified and special features of each regime are analyzed. The stress sensitivity has a great impact on the later stage of production. The mobility ratio and the SRV radius mainly affect SRV pseudo-steady-state flow period and interporosity flow period in the outer region. Fracture number mainly affects the linear flow in the SRV. Fracture geometries mainly affect linear flow and interporosity flow in the SRV. This study has some significance for well test interpretation and production performance analysis of tight reservoirs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa