Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 70(17): 1403-15, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17687726

RESUMO

Induction of apoptosis by silica in alveolar macrophages (AM) may be a critical step in silica-induced lung injury and pulmonary fibrosis. This study investigated the mechanism(s) through which silica induces apoptosis in AM and their production of proinflammatory cytokines. Using N-acetyl-L-cysteine (NAC) for glutathione (GSH) synthesis and removal of reactive oxygen species (ROS), and rhodamine 6G (R6G) to inhibit the mitochondrial-dependent function, this study found that silica-induced apoptosis of rat AM in primary culture is mitochondria dependent and exhibits a mechanism involving ROS generation, increased mitochondrial release of cytochrome c, and the activation of caspase 9, but not caspase 8, activity. Silica-induced apoptosis was accompanied by a lowering of intracellular and mitochondrial GSH (mGSH) and was blocked by pretreatment of cells with NAC or R6G. When cells were exposed to silica and then treated with either NAC or R6G, silica-induced apoptosis was not affected by the blocking agent. In addition, R6G, which inhibited cellular ATP production and mitochondrial ROS generation, had no effect on apoptosis induced by exogenous hydrogen peroxide or superoxide. Pretreatment of cells with NAC or R6G also inhibited silica-induced production of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha, but the inhibition of these cytokines with agents known to block their secretion did not protect cells from silica-induced apoptosis. Data indicate that silica-induced apoptosis is mediated through mitochondrial generation of ROS, which may be inhibited by pretreatment of cells with R6G that prevents ROS generation, or with NAC that maintains a high level of mGSH. The secretion of IL-1beta and TNF-alpha by silica-exposed AM was markedly inhibited by NAC and R6G, suggesting that the production of these cytokines is also ROS dependent.


Assuntos
Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Rodaminas/farmacologia , Dióxido de Silício/toxicidade , Animais , Apoptose/imunologia , Caspase 9/efeitos dos fármacos , Caspase 9/metabolismo , Células Cultivadas , Citocinas/metabolismo , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
2.
J Toxicol Environ Health A ; 70(10): 820-8, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17454558

RESUMO

Exposure to diesel exhaust particles (DEP) was shown to increase the susceptibility of the lung to bacterial infection in rats. In this study, the effects of DEP on alveolar macrophage (AM) phagocytic and bactericidal functions and cytokine secretion by AM and lymphocytes in response to Listeria monocytogenes infection were investigated in vitro and the roles of different DEP components in these processes were compared. Exposure to DEP or the organic extracts of DEP (eDEP) significantly decreased the phagocytosis and killing of L. monocytogenes by AM obtained from normal rats. Washed DEP (wDEP) also decreased AM phagocytosis and bacterial killing to a lesser extent, whereas carbon black (CB) reduced AM phagocytosis but had no significant effect on AM bactericidal activity. DEP or eDEP concentration-dependently suppressed L. monocytogenes-induced secretion of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-12 by AM and of IL-2 and interferon-gamma by lymphocytes obtained from L. monocytogenes-infected rats, but augmented the AM secretion of IL-10. wDEP or CB, however, exerted little or no effect on these L. monocytogenes-induced cytokines. These results provide direct evidence that DEP, through the actions of organic components, suppresses AM phagocytic and bactericidal functions in vitro. Inhibition of AM phagocytic function and alterations of AM and lymphocyte cytokine secretion by DEP and DEP organic compounds may be implicated in the diminished AM bactericidal activity and the lymphatic arm of the host immune system, thus resulting in an suppressed pulmonary clearance of L. monocytogenes and an increased susceptibility of the lung to bacterial infection.


Assuntos
Listeriose/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Fagocitose/efeitos dos fármacos , Emissões de Veículos/toxicidade , Análise de Variância , Animais , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Listeria monocytogenes/imunologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos BN
3.
Environ Health Perspect ; 114(8): 1253-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16882535

RESUMO

Diesel exhaust particles (DEPs) have been shown to activate oxidant generation by alveolar macrophages (AMs), alter xenobiotic metabolic pathways, and modify the balance of pro-antiinflammatory cytokines. In this study we investigated the role of nitric oxide (NO) in DEP-mediated and DEP organic extract (DEPE) -mediated inflammatory responses and evaluated the interaction of inducible NO synthase (iNOS) and cytochrome P450 1A1 (CYP1A1). Male Sprague-Dawley rats were intratracheally (IT) instilled with saline, DEPs (35 mg/kg), or DEPEs (equivalent to 35 mg DEP/kg), with or without further treatment with an iNOS inhibitor, aminoguanidine (AG; 100 mg/kg), by intraperitoneal injection 30 min before and 3, 6, and 9 hr after IT exposure. At 1 day postexposure, both DEPs and DEPEs induced iNOS expression and NO production by AMs. AG significantly lowered DEP- and DEPE-induced iNOS activity but not the protein level while attenuating DEPE- but not DEP-mediated pulmonary inflammation, airway damage, and oxidant generation by AMs. DEP or DEPE exposure resulted in elevated secretion of both interleukin (IL) -12 and IL-10 by AMs. AG significantly reduced DEP- and DEPE-activated AMs in IL-12 production. In comparison, AG inhibited IL-10 production by DEPE-exposed AMs but markedly increased its production by DEP-exposed AMs, suggesting that NO differentially regulates the pro- and antiinflammatory cytokine balance in the lung. Both DEPs and DEPEs induced CYP1A1 expression. AG strongly inhibited CYP1A1 activity and lung S9 activity-dependent 2-aminoanthracene mutagenicity. These studies show that NO plays a major role in DEPE-induced lung inflammation and CYP-dependent mutagen activation but a lesser role in particulate-induced inflammatory damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Citocromo P-450 CYP1A1/fisiologia , Gasolina/toxicidade , Mutagênicos , Óxido Nítrico Sintase Tipo II/fisiologia , Pneumonia/enzimologia , Pneumonia/etiologia , Emissões de Veículos/toxicidade , Animais , Células Cultivadas , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/metabolismo , Citocinas/análise , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Luminescência , Masculino , Microssomos/enzimologia , Microssomos/metabolismo , Testes de Mutagenicidade , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Ácido Peroxinitroso/metabolismo , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium/genética , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
4.
J Toxicol Environ Health A ; 69(13): 1261-84, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16754540

RESUMO

Studies have shown that silica induces apoptosis through mechanisms that also regulate the inflammatory responses of lung cells to silica exposure. Although implicated in cell culture studies, the major in vivo pathway through which silica induces apoptosis has not been characterized. The present study is to study the role of mitochondria in silica-induced oxidative stress and apoptosis in vivo. Rats were intratracheally instilled with saline or silica (20 mg/kg) and sacrificed at 3 days post-exposure unless otherwise specified. Alveolar macrophages (AM) were harvested by bronchoalveolar lavage and measured for apoptosis and secretion of inflammatory mediators in the presence or absence of appropriate inhibitors. Concurrent studies were carried out to determine the presence of intracellular reactive oxygen species (ROS) via confocal microscopy, mitochondrial trans-membrane potential by flow cytometry, mitochondrial release of cytochrome c, and the activation of caspase activities in AM by Western blot analysis. Silica was shown to induce elevated levels of intracellular ROS, resulting in a marked decrease in intracellular glutathione (GSH) and cysteine and a sustained presence of apoptotic AM in silica-exposed rats up to two weeks post-exposure. The apoptotic AM were characterized by decreased mitochondrial trans-membrane potential, increased mitochondrial release of cytochrome c, activated caspase 9 (but not caspase 8) and caspase 3 activities, and PARP degradation, comparing to cells from the saline control. Silica induced AM production of IL-1 and TNF-alpha, which may be inhibited by ex vivo treatment of cells with N-acetylcysteine (NAC) or microtubule modifiers such as tetrandrine and taxol. NAC was shown to prevent intracellular GSH depletion and silica-induced production of IL-1beta and TNF-alpha but not apoptosis in AM from silica-exposed rats. These results show that silica-induced apoptosis is mediated through the mitochondrial pathway but not through cellular production of inflammatory cytokines, ROS generation, however, induces both apoptosis and cellular secretion of inflammatory mediators.


Assuntos
Apoptose , Macrófagos Alveolares/imunologia , Mitocôndrias/fisiologia , Dióxido de Silício/efeitos adversos , Acetilcisteína/farmacologia , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Benzilisoquinolinas/farmacologia , Caspase 3 , Caspases/metabolismo , Cisteína/biossíntese , Citocromos c/biossíntese , Modelos Animais de Doenças , Glutationa/biossíntese , Mediadores da Inflamação/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Potenciais da Membrana/fisiologia , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Paclitaxel/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/imunologia , Compostos de Sulfidrila/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
5.
Toxicol Sci ; 88(1): 73-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107554

RESUMO

Studies have shown that exposure to diesel exhaust particles (DEP) suppresses pulmonary host defense against bacterial infection. The present study was carried out to characterize whether DEP exposure exerts a sustained effect in which inhaled DEP increase the susceptibility of the lung to bacterial infection occurring at a later time. Brown Norway rats were exposed to filtered air or DEP by inhalation at a dose of 21.2 +/- 2.3 mg/m3, 4 h/day for 5 days, and intratracheally instilled with saline or 100,000 Listeria monocytogenes (Listeria) 7 days after the final DEP exposure. Bacterial growth and cellular responses to DEP and Listeria exposures were examined at 3 and 7 days post-infection. The results showed that inhaled DEP prolonged the growth of bacteria, administered 7 days post DEP exposure, in the lung as compared to the air-exposed controls. Pulmonary responses to Listeria infection were characterized by increased production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12, and IL-10 by alveolar macrophages (AM) and increased presence of T lymphocytes and their CD4+ and CD8+ subsets in lung draining lymph nodes that secreted elevated levels of IL-2, IL-6, IL-10, and interferon (IFN)-gamma. Diesel exhaust particles were found to inhibit Listeria-induced production of IL-1beta and TNF-alpha, which are responsible for the innate immunity, and IL-12, which initiates the development of T helper (Th)1 responses, but enhance Listeria-induced AM production of IL-10, which prolongs Listeria survival in these phagocytes. The dual action of DEP on AM production of IL-12 and IL-10 correlated with an inhibition of the development of bacteria-specific T lymphocytes by DEP. Cytokine production by lymphocytes from DEP- and Listeria-exposed rats showed a marked decrease in the production of IL-2, IL-10, and IFN-gamma compared to Listeria infection alone, suggesting either that DEP inhibit the production of cytokines by lymphocytes or that these lymphocytes contained T-cell subsets that are different from those of Listeria infection alone and less effective in mediating Th1 immune responses. This study demonstrates that inhaled DEP, after a 7-day resting period, increase the susceptibility of the lung to bacterial infection occurring at a later time by inhibiting macrophage immune function and suppressing the development of T-cell-mediated immune responses. The results support the epidemiological observations that exposure to DEP may be responsible for the pulmonary health effects on humans.


Assuntos
Poluentes Atmosféricos/toxicidade , Imunidade Celular/efeitos dos fármacos , Exposição por Inalação , Listeriose/imunologia , Linfócitos T/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Ratos , Ratos Endogâmicos BN , Linfócitos T/imunologia
6.
Toxicol Sci ; 88(1): 202-12, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107553

RESUMO

We have previously demonstrated that exposure to diesel exhaust particles (DEP) prior to ovalbumin (OVA) sensitization in rats reduced OVA-induced airway inflammation. In the present study, Brown Norway rats were first sensitized to OVA (42.3 +/- 5.7 mg/m3) for 30 min on days 1, 8, and 15, then exposed to filtered air or DEP (22.7 +/- 2.5 mg/m3) for 4 h/day on days 24-28, and challenged with OVA on day 29. Airway responsiveness was examined on day 30, and animals were sacrificed on day 31. Ovalbumin sensitization and challenge resulted in a significant infiltration of neutrophils, lymphocytes, and eosinophils into the lung, elevated presence of CD4+ and CD8+ T lymphocytes in lung draining lymph nodes, and increased production of serum OVA-specific immunoglobulin (Ig)E and IgG. Diesel exhaust particles pre-exposure augmented OVA-induced production of allergen-specific IgE and IgG and pulmonary inflammation characterized by marked increases in T lymphocytes and infiltration of eosinophils after OVA challenge, whereas DEP alone did not have these effects. Although OVA-sensitized rats showed modest response to methacholine challenge, it was the combined DEP and OVA exposure that produced significant airway hyperresponsiveness in this animal model. The effect of DEP pre-exposure on OVA-induced immune responses correlated with an interactive effect of DEP with OVA on increased production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM) and alveolar type II (ATII) cells, NO levels in bronchoalveolar lavage fluid, the induction of inducible NO synthase expression in AM and ATII cells, and a depletion of total intracellular glutathione (GSH) in AM and lymphocytes. These results show that DEP pre-exposure exacerbates the allergic responses to the subsequent challenge with OVA in OVA-sensitized rats. This DEP effect may be, at least partially, attributed to the elevated generation of ROS in AM and ATII cells, a depletion of GSH in AM and lymphocytes, and an increase in AM and ATII cell production of NO.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/induzido quimicamente , Exposição por Inalação , Ovalbumina/administração & dosagem , Emissões de Veículos/toxicidade , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Óxido Nítrico/metabolismo , Ovalbumina/imunologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Endogâmicos BN , Espécies Reativas de Oxigênio/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
7.
Toxicol Sci ; 88(1): 150-60, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16120749

RESUMO

Exposure to diesel exhaust particles (DEP) during the sensitization process has been shown to increase antigen-specific IgE production and aggravate allergic airway inflammation in human and animal models. In this study, we evaluated the effect of short-term DEP exposure on ovalbumin (OVA)-mediated responses using a post-sensitization model. Brown Norway rats were first exposed to filtered air or DEP (20.6 +/- 2.7 mg/m3) for 4 h/day for five consecutive days. One day after the final air or DEP exposure (day 1), rats were sensitized with aerosolized OVA (40.5 +/- 6.3 mg/m3), and then again on days 8 and 15, challenged with OVA on day 29, and sacrificed on days 9 or 30, 24 h after the second OVA exposure or the final OVA challenge, respectively. Control animals received aerosolized saline instead of OVA. DEP were shown to elicit an adjuvant effect on the production of antigen-specific IgE and IgG on day 30. At both time points, no significant airway inflammatory responses and lung injury were found for DEP exposure alone. However, the OVA-induced inflammatory cell infiltration, acellular lactate dehydrogenase activity and albumin content in bronchoalveolar lavage (BAL) fluid, and numbers of T cells and their CD4+ and CD8+ subsets in lung-draining lymph nodes were markedly reduced by DEP on day 30 compared with the air-plus-OVA exposure group. The OVA-induced nitric oxide (NO) in the BAL fluid and production of NO, interleukin (IL)-10, and IL-12 by alveolar macrophages (AM) were also significantly lowered by DEP on day 30 as well as day 9. DEP or OVA alone decreased intracellular glutathione (GSH) in AM and lymphocytes on days 9 and 30. The combined DEP and OVA exposure resulted in further depletion of GSH in both cell types. These results show that short-term DEP exposure prior to sensitization had a delayed effect on enhancement of the sensitization in terms of allergen-specific IgE and IgG production, but caused an attenuation of the allergen-induced airway inflammatory responses.


Assuntos
Poluentes Atmosféricos/toxicidade , Hiper-Reatividade Brônquica/induzido quimicamente , Bronquite/induzido quimicamente , Exposição por Inalação , Ovalbumina/administração & dosagem , Emissões de Veículos/toxicidade , Adjuvantes Imunológicos/administração & dosagem , Poluentes Atmosféricos/imunologia , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Bronquite/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Imunoglobulina E/sangue , L-Lactato Desidrogenase/análise , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Óxido Nítrico/análise , Ovalbumina/imunologia , Ratos , Ratos Endogâmicos BN , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
8.
Environ Health Perspect ; 110(4): 349-53, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11940452

RESUMO

The purpose of this study was to characterize the effects of diesel exhaust particles (DEP) on thiol regulation in alveolar macrophages (AM) and lymphocytes. We obtained AM and lymph node (thymic and tracheal) cells (LNC) (at different time points) from rats exposed intratracheally to DEP (5 mg/kg) or saline, and measured inflammatory markers, thiol levels, and glutathione reductase (GSH-R) activity. DEP exposure produced significant increases in neutrophils, lactate dehydrogenase, total protein, and albumin content in the lavage fluid. AM from DEP-exposed rats showed a time-dependent increase in intracellular cysteine (CYSH) and GSH. In LNC the intracellular GSH reached peak level by 24 hr, declining toward control levels by 72 hr after exposure. LNC-CYSH and AM-CYSH and GSH were increased at both 24 and 72 hr. Both Sprague-Dawley and Brown Norway rats showed similar trends of responses to DEP exposure as per measurement of the inflammatory markers and thiol changes. AM and, to a lesser degree, LNC were both active in cystine uptake. The DEP exposure stimulated GSH-R activity and increased the conversion of cystine to CYSH in both cell types. The intracellular level of GSH in DEP-exposed AM was moderately increased compared with the saline control, and was further augmented when cells were incubated with cystine. In contrast, the intracellular level of GSH in DEP-exposed LNC was significantly reduced despite the increased CYSH level and GSH-R activity when these cells were cultured for 16 hr. DEP absorbed 23-31% of CYSH, cystine, and GSH, and only 8% of glutathione disulfide when incubated in cell free media. These results indicate that DEP exposure caused lung inflammation and affected thiol levels in both AM and LNC.


Assuntos
Cisteína/análise , Glutationa/análise , Linfócitos/fisiologia , Macrófagos Alveolares/fisiologia , Compostos de Sulfidrila/metabolismo , Emissões de Veículos/efeitos adversos , Animais , Glutationa Redutase/metabolismo , Inflamação , Linfócitos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Traqueia
9.
Environ Health Perspect ; 111(4): 524-30, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12676610

RESUMO

Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of Listeria monocytogenes (Listeria) and inhibited the phagocytosis of alveolar macrophages and their response to Listeria in the secretion of interleukin (IL)-1 beta, tumor necrosis factor alpha, and IL-12. In this report we examined the effects of DEPs and/or Listeria on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-gamma. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m3 for 4 hr by nose-only inhalation and inoculated with 100,000 Listeria. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed L. monocytogenes. Listeria infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from Listeria-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-gamma and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding Listeria-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-gamma. In rats exposed to 100 mg/m3 DEPs and Listeria, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the Listeria-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-gamma. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Imunidade Celular/efeitos dos fármacos , Exposição por Inalação , Listeria monocytogenes/patogenicidade , Listeriose/etiologia , Listeriose/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Linfócitos T/imunologia , Emissões de Veículos/efeitos adversos , Animais , Citocinas/biossíntese , Citocinas/metabolismo , Regulação para Baixo , Listeria monocytogenes/imunologia , Masculino , Ratos
10.
Environ Health Perspect ; 110(11): 1105-11, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12417481

RESUMO

It has been hypothesized that diesel exhaust particles (DEPs) aggravate pulmonary bacterial infection by both innate and cell-mediated immune mechanisms. To test this hypothesis, we investigated the effects of DEP exposure on the functions of alveolar macrophages (AMs) and lymphocytes from lung-draining lymph nodes using a rat Listeria monocytogenes infection model. In the present study, we focused on the effects of DEP exposure on AM functions, including phagocytic activity and secretion of proinflammatory cytokines. The Listeria infection model was characterized by an increase in neutrophil count, albumin content, and acellular lactate dehydrogenase activity in the bronchoalveolar lavage (BAL) fluid at 3 and 7 days postinfection. Short-term DEP inhalation (50 and 100 mg/m(3), 4 hr) resulted in a dose-dependent suppression of lung clearance of Listeria, with the highest bacteria count occurring at day 3. This aggravated bacterial infection was consistent with the inhibitory effect of DEPs on macrophage functions. DEPs suppressed phagocytosis and Listeria-induced basal secretion of interleukin-1ss (IL-1ss) and IL-12 by AMs in a dose-dependent manner. The amount of IL-1ss and IL-12 in the BAL fluid was also reduced by DEP exposure. In addition, DEPs decreased Listeria-induced lipopolysaccharide-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha), IL-1ss, and IL-12 from AMs. These results suggest that DEPs retard bacterial clearance by inhibiting AM phagocytosis and weaken the innate immunity by inhibiting AM secretion of IL-1ss and TNF-alpha. DEPs may also suppress cell-mediated immunity by inhibiting AM secretion of IL-12, a key cytokine for the initiation of T helper type 1 cell development in Listeria infection.


Assuntos
Exposição por Inalação , Listeria monocytogenes/patogenicidade , Listeriose/imunologia , Macrófagos Alveolares/fisiologia , Exposição Ocupacional , Emissões de Veículos/efeitos adversos , Animais , Citocinas/imunologia , Citocinas/farmacologia , Modelos Animais de Doenças , Humanos , Listeriose/fisiopatologia , Linfócitos/fisiologia , Masculino , Fagocitose , Ratos
11.
Toxicol Sci ; 82(1): 143-53, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15319486

RESUMO

Diesel exhaust particles (DEP) have been shown to suppress alveolar macrophage (AM)-mediated pulmonary immune responses to Listeria monocytogenes in vivo. In this study, effects of DEP-derived reactive oxygen species (ROS) and heme oxygenase (HO)-1 on AM-mediated immune responses to L. monocytogenes were investigated. Brown Norway rats were intratracheally inoculated with 100,000 L. monocytogenes, and AM were isolated at 7 days post-infection. Exposure to DEP or their organic extract (eDEP), but not the washed DEP (wDEP) or carbon black, increased intracellular ROS and HO-1 expression in AM. Induction of ROS and HO-1 by eDEP was partially reversed by alpha-naphthoflavone, a cytochrome P450 1A1 inhibitor, and totally blocked by N-acetylcysteine. In addition, exposure to eDEP, but not wDEP, inhibited lipopolysacchride-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-12 (IL-12), but augmented production of IL-10 by AM. Kinetic studies showed that modulation of cytokines by eDEP was preceded by ROS and HO-1 induction. Furthermore, pretreatment of AM with superoxide dismutase (SOD) or zinc protoporphrin IX (Znpp), which attenuated eDEP-induced HO-1 expression/activity, substantially inhibited eDEP effect on IL-10. Finally, direct stimulation with pyrogallol (PYR), a superoxide donor, upregulated HO-1 and IL-10 but decreased secretion of IL-12 in L. monocytogenes-infected AM. These results show that DEP, through eDEP-mediated ROS, induce HO-1 expression and IL-10 production and at the same time inhibit AM production of TNF-alpha and IL-12 to dampen the host immune responses. The results also suggest that HO-1 may play an important role in regulating production of IL-10 by DEP-exposed and L. monocytogenes-infected AM.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Listeriose/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade , Acetilcisteína/farmacologia , Animais , Benzoflavonas/farmacologia , Citocinas/metabolismo , Combinação de Medicamentos , Heme Oxigenase-1 , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/imunologia , Masculino , Protoporfirinas/farmacologia , Pirogalol/farmacologia , Ratos , Ratos Endogâmicos BN , Superóxido Dismutase/farmacologia
12.
Toxicol Sci ; 77(2): 263-71, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14657513

RESUMO

Diesel exhaust particles (DEP) have been shown to alter pulmonary immune responses to bacterial infection. Exposure of rats to 100 mg/m(3) DEP for 4 h was found to aggravate Listeria monocytogenes(Listeria) infection at 3 days postinfection, but the bacteria were largely cleared at 7 days postinfection due to the development of a strong T cell-mediated immunity. In the present study, we examined the effects of repeated DEP exposure at lower doses on pulmonary responses to bacterial infection. Brown Norway rats were exposed to DEP by inhalation at 20.62 +/- 1.31 mg/m 3 for 4 h/day for 5 days, followed by intratracheal inoculation with 100,000 Listeria at 2 h after the last DEP exposure. DEP-exposed rats showed a significant increase in lung bacterial load at both 3 and 7 days postinfection. The repeated DEP exposure was shown to suppress both the innate, orchestrated by alveolar macrophages (AM), and T cell-mediated responses to Listeria. DEP inhibited AM production of interleukin- (IL-) 1beta, tumor necrosis factor- (TNF-) alpha, and IL-12 but enhanced Listeria-induced AM production of IL-10, which has been shown to prolong the survival of intracellular pathogens such as Listeria. DEP exposure also suppressed the development of bacteria-specific lymphocytes from lung-draining lymph nodes, as indicated by the decreased numbers of T lymphocytes and their CD4(+) and CD8(+) subsets. Furthermore, the DEP exposure markedly inhibited the Listeria-induced lymphocyte secretion of IL-2 at day 7, IL-10 at days 3 and 7, and interferon- (IFN-) gamma at days 3 to 10 postinfection when compared to air-exposed controls. These results show a sustained pattern of downregulation of T cell-mediated immune responses by repeated low-dose DEP exposure, which is different from the results of a single high-dose exposure where the acute effect of DEP aggravated bacteria infection but triggered a strong T cell-mediated immunity.


Assuntos
Imunidade Celular/efeitos dos fármacos , Exposição por Inalação , Listeriose/imunologia , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Lavagem Broncoalveolar , Células Cultivadas , Citocinas/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos BN , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
13.
J Toxicol Environ Health A ; 67(3): 221-31, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14681077

RESUMO

The effect of diesel exhaust particulate (DEP) exposure on innate, cellular and humoral pulmonary immunity was studied using high-dose, acute-exposure rat, mouse, and cell culture models. DEP consists of a complex mixture of petrochemical-derived organics adsorbed onto elemental carbon particles. DEP is a major component of particulate urban air pollution and a health concern in both urban and occupational environments. The alveolar macrophage is considered a key cellular component in pulmonary innate immunity. DEP and DEP organic extracts have been found to suppress alveolar macrophage function as demonstrated by reduced production of cytokines (interleukin-1 [IL-1], tumor necrosis factor- alpha [TNF- alpha]) and reactive oxygen species (ROS) in response to a variety of agents, including lipopolysaccharide (LPS), interferon- gamma (IFN- gamma), and bacteria. Fractionation of DEP organic extract suggests that this activity was predominately in polyaromatic-containing and more polar (resin) fractions. Organic-stripped DEP did not alter these innate pulmonary immune responses. DEP also depressed pulmonary clearance of Listeria monocytogenes and Bacillus Calmette-Guerin (BCG). The contribution of the organic component of DEP is less well defined with respect to acquired and humoral immunity. Indeed, both DEP and carbon black enhanced humoral immune responses (specific immunoglobulin [Ig] E and IgG) in an ovalbumin-sensitized rat model. It is concluded that both the particulate and adsorbed organics may contribute to DEP-mediated immune alterations.


Assuntos
Poluentes Atmosféricos/toxicidade , Formação de Anticorpos/imunologia , Modelos Animais de Doenças , Imunidade Celular/imunologia , Exposição por Inalação/efeitos adversos , Pneumonia , Emissões de Veículos/toxicidade , Doença Aguda , Poluentes Atmosféricos/química , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Monitoramento Ambiental , Monitoramento Epidemiológico , Exposição por Inalação/análise , Interferon gama/imunologia , Interleucina-1/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Pneumonia/epidemiologia , Pneumonia/etiologia , Pneumonia/imunologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia , Emissões de Veículos/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-12515672

RESUMO

Exposure to diesel exhaust particles (DEP) is an environmental and occupational health concern. This review examines the cellular actions of the organic and the particulate components of DEP in the development of various lung diseases. Both the organic and the particulate components cause oxidant lung injury. The particulate component is known to induce alveolar epithelial damage, alter thiol levels in alveolar macrophages (AM) and lymphocytes, and activate AM in the production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The organic component, on the other hand, is shown to generate intracellular ROS, leading to a variety of cellular responses including apoptosis. There are a number of differences between the biological actions exerted by these two components. The organic component is responsible for DEP induction of cytochrome P450 family 1 enzymes that are critical to the polycyclic aromatic hydrocarbons (PAH) and nitro-PAH metabolism in the lung as well as in the liver. The particulate component, on the other hand, causes a sustained down-regulation of CYP2B1 in the rat lung. The significance of this effect on pulmonary metabolism of xenobiotics and endobiotics remains to be seen, but may prove to be an important factor governing the interplay of the pulmonary metabolic and inflammatory systems. Long-term exposures to various particles including DEP, carbon black (CB), TiO2, and washed DEP devoid of the organic content, have been shown to produce similar tumorigenic responses in rodents. There is a lack of correlation between tumor development and DEP chemical-derived DNA adduct formation. But the organic component has been shown to generate ROS that produce 8-hydroxydeoxyguanosine (8-OHdG) in cell culture. The organic, but not the particulate, component of DEP suppresses the production of pro-inflammatory cytokines by AM and the development of Th1 cell-mediated immunity. The mechanism for this effect is not yet clear, but may involve the induction of heme oxygenase-1 (HO-1), a cellular genetic response to oxidative stress. Both the organic and the particulate components of DEP enhance respiratory allergic sensitization. Part of the DEP effects may be due to a depletion of glutathione in lymphocytes. The organic component, which is shown to induce IL-4 and IL-10 productions, may skew the immunity toward Th2 response, whereas the particulate component may stimulate both the Th1 and Th2 responses. In conclusion, the literature shows that the particulate and organic components of DEP exhibit different biological actions but both involve the induction of cellular oxidative stress. Together, these effects inhibit cell-mediated immunity toward infectious agents, exacerbate respiratory allergy, cause DNA damage, and under long-term exposure, induce the development of lung tumors.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Alvéolos Pulmonares/patologia , Emissões de Veículos/efeitos adversos , Animais , Citocromo P-450 CYP2B1/farmacologia , Adutos de DNA , Dano ao DNA , Humanos , Inflamação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/fisiopatologia , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/imunologia , Ratos , Espécies Reativas de Oxigênio , Células Th1/imunologia , Células Th2/imunologia
15.
Pharm Res ; 19(6): 825-31, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12134953

RESUMO

PURPOSE: To demonstrate that rat alveolar macrophages (AM) exhibited the PepT1-like transporter for the uptake of arginine (Arg)-containing small peptides and utilized these peptides as direct substrates for nitric oxide (NO) production. NO is an important mediator that, on one hand, protects the lung from bacteria infection and, on the other hand, augments inflammatory lung injury. METHOD: The uptake of small peptides by rat AM was evaluated using fluorescein isothiocyanate (FITC)-labeled (*) peptides (Arg-Lys*, Gly-Sar-Lys*, and beta-Ala-Lys*), high-performance liquid chromatography (HPLC) analysis of potential peptide degradation, and known inhibitors of Arg and PepT1 transport. NO production by AM through Arg and Arg-containing peptides was studied with and without inhibition by transport inhibitors. The presence of PepT1-like transporter on AM was evaluated using anti-PepT1 antisera and Western blot analysis. The substrate specificity of Arg-Gly and Arg-Gly-Asp was determined using purified inducible NO synthase (iNOS). The availability of Arg-containing peptides in the lung was determined by HPLC analysis of bronchoalveolar lavage (BAL) fluid. RESULTS: The FITC-labeled peptides were internalized by AM without degradation. The uptake of Arg-Lys*, beta-Ala-Lys*, and Gly-Sar-Lys* was blocked (approximately 50%) by cephradine (an inhibitor of PepT1 for peptide transport) but not by Lys (an inhibitor on cationic amino acid transporter 2B for Arg transport). The NO production by AM through Arg-containing peptides was significantly blocked only by PepT1 inhibitors and by an anti-PepT1 antibody in a dose-dependent manner. These inhibitors had no effect on the AM production of NO using Arg as a substrate. Arg-Gly and Arg-Gly-Asp were found to be direct substrates for iNOS with similar Km and Vmax values to those of Arg. But, the production of NO by AM using these peptides as substrates was 2-fold higher than using Arg as a substrate. Both Arg-Gly and Arg-Gly-Asp were found in the BAL fluid. The presence of a PepT1-like transporter on AM was confirmed by Western blotting. CONCLUSION: This study shows that AM exhibit PepT1-like transporter for small peptide uptake. Arginine-containing peptides, through the PepT1 transporter system, can serve as direct substrates of iNOS for the production of NO by AM.


Assuntos
Arginina/metabolismo , Macrófagos Alveolares/metabolismo , Peptídeos/metabolismo , Simportadores , Animais , Arginina/sangue , Proteínas de Transporte/metabolismo , Células Cultivadas , Pulmão/química , Pulmão/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Transportador 1 de Peptídeos , Peptídeos/sangue , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
16.
Toxicol Ind Health ; 18(7): 343-52, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15068134

RESUMO

Dose-dependent specific antibody production, antigen-dependent pulmonary inflammation, and thiol changes in the lung and associated lymph nodes were examined in a Brown Norway rat model of pulmonary sensitization. Cysteine (CYSH), glutathione (GSH), and markers of inflammation in bronchoalveolar lavage fluid (BALF) were measured following ovalbumin (OVA) inhalation challenge. Alveolar macrophages (AM) and pulmonary-associated lymph node cells (LNC) were isolated and intracellular CYSH and GSH assessed. OVA-specific IgE and IgG antibodies were quantified from sera. A dose-dependent biphasic response was noted with respect to OVA-specific IgE. OVA-specific IgG concentrations were maximal at 68 mg (OVA)/m3. OVA challenge to sensitized rats induced increases in BALF albumin, total protein, lactate dehydrogenase, CYSH and GSH that were independent of serum antibody concentrations. AM thiols were modestly elevated at low OVA challenge doses, but sharply reduced at the higher OVA challenge doses. In contrast, both thiols were dose dependently elevated in BALE CYSH, but not GSH, was elevated in LNC of OVA challenged rats. In summary, antigen exposure caused a dose-dependent alteration of inflammatory, thiol and immune parameters in OVA sensitized and challenged rats. Changes in thiol levels did not correlate with antibody responses. While the results of the present study do not support a functional role for thiols in the immune response, it is important to note the dose-dependent dramatic alteration seen in thiols following sensitization and challenge.


Assuntos
Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Compostos de Sulfidrila/imunologia , Animais , Biomarcadores/análise , Cisteína/biossíntese , Cisteína/imunologia , Relação Dose-Resposta a Droga , Glutationa/biossíntese , Glutationa/imunologia , Imunoglobulina E/biossíntese , Imunoglobulina G/biossíntese , Linfonodos/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Ovalbumina/imunologia , Ratos , Ratos Endogâmicos BN , Compostos de Sulfidrila/metabolismo
17.
Exp Lung Res ; 28(5): 333-49, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12097228

RESUMO

Brown Norway rats were exposed by intratracheal instillation of saline, carbon black (CB), or diesel exhaust particles (DEP) (5 mg/kg) on day 1, followed by exposure to ovalbumin (OVA, 90 mg/m(3)) or saline for 30 minutes on days 1, 8, 15, and 29. Animals were sacrificed on day 30. The DEP, CB, or OVA exposure alone did not result in abnormal levels of inflammatory cells, lactate dehydrogenase (LDH), or total protein in the lavage fluid. In combined OVA-DEP or OVA-CB exposure, however, these markers were significantly increased. The adjuvant effect of CB and DEP on OVA sensitization was evidenced by the marked increases in serum OVA-specific IgG (5.6-fold) and IgE (3.5-4 fold) levels, and the increase in interleukin-4 (IL-4) mRNA levels in lung tissue. The OVA exposure markedly reduced glutathione (GSH) levels in both cell types. In combined DEP-OVA exposure, the level of GSH in lymphocytes was further decreased, indicating a possible interactive effect between DEP and OVA exposures. These results show that both DEP and CB augmented OVA-induced allergic sensitization, and that particle composition of DEP may not be a critical factor for the adjuvant effect. OVA exposure causes significant depletion of intracellular GSH in lymphocytes, which may play a key role in OVA-mediated immune responses.


Assuntos
Carbono/farmacologia , Ovalbumina/farmacologia , Hipersensibilidade Respiratória/metabolismo , Compostos de Sulfidrila/metabolismo , Emissões de Veículos/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Carbono/imunologia , Expressão Gênica/imunologia , Glutationa/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interferon gama/genética , Interleucina-4/genética , L-Lactato Desidrogenase/metabolismo , Masculino , Ovalbumina/imunologia , Ratos , Ratos Endogâmicos BN , Hipersensibilidade Respiratória/imunologia , Células Th2/imunologia
18.
Inhal Toxicol ; 15(13): 1347-68, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14569497

RESUMO

Asphalt fume inhalation has been suspected of affecting immune function in exposed workers. The objective of this study was to evaluate the effect of asphalt exposure on lung immune responses in rats using a bacterial infectivity model. Pathogen-free male Sprague-Dawley rats were exposed by inhalation to asphalt fumes (72.6 +/- 4.95 mg/m3) or filtered air for 6 h/day for 5 days. One day after the final asphalt exposure, rats were intratracheally inoculated with 5 x 10(5) Listeria monocytogenes. At 0 (prior to bacterial inoculation), 3, and 7 days after L. monocytogenes instillation, the lungs of each animal were divided. Bronchoalveolar lavage (BAL) was performed on right lungs. The recovered BAL cells were then differentiated and counted, and alveolar macrophage (AM) function was determined. Albumin and lactate dehydrogenase (LDH), two indices of lung injury, were measured in the acellular BAL fluid. To assess bacterial clearance, the left lungs were removed, homogenized, and bacterial colony-forming units (CFUs) were counted. In addition, lung-draining lymph nodes were removed, and lymphocyte phenotype and lymphocyte-induced cytokine production were examined. Asphalt fume exposure did not cause lung injury or inflammation in rats in the absence of infection. Infection induced elevations in AMs, neutrophils (PMNs), albumin, and LDH. Importantly, no significant differences were seen when comparing the asphalt group with the air and nonexposed naive groups at any time before or after infection. Also, asphalt fume inhalation exposure did not affect the rate of pulmonary clearance of L. monocytogenes or AM production of reactive oxygen and nitrogen species. However, asphalt-related increases in lymphocyte secretion of interferon (IFN)-gamma, interleukin (IL)-6, and IL-10 were observed at different times after bacterial infection, whereas the total number of lymph-node cells and the percentage of CD4+ and CD8+ cells were not significantly different among the treatment groups. Despite the asphalt-induced changes observed in lymphokine secretion, adaptive immune function seemed to function properly in lung defense against bacterial infection. Because innate nonspecific lung responses and pulmonary clearance of L. monocytogenes were unaffected by asphalt fume exposure, lung defenses were sufficient to control the infection. It was concluded that acute inhalation of asphalt fumes at a high concentration had a minimal effect on lung immune responses to infection in rats.


Assuntos
Hidrocarbonetos/intoxicação , Exposição por Inalação , Listeriose/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Exposição Ocupacional , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Hidrocarbonetos/administração & dosagem , Incineração , Listeria monocytogenes/patogenicidade , Pulmão/patologia , Pneumopatias/etiologia , Pneumopatias/imunologia , Linfócitos/imunologia , Linfócitos/fisiologia , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa