Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 63(22): 10335-10345, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38768637

RESUMO

Low-dimensional lead-halide hybrids are an emerging class of optical functional material but suffer the problems of toxicity and poor air stability. Among lead-free metal halides, tin(IV)-based metal halides are promising optoelectronic materials due to their robust structure and environmental friendliness. However, their photoluminescence (PL) properties are poor, and the underlying mechanisms are still elusive. Herein, a stable Sn4+-based halide hybrid, (C4H7N2)2SnCl6, was developed, which however exhibits poor PL properties at room temperature (RT) due to the lattice defects and the robust crystal structure. To enhance its PL efficiency, the Te4+ ion with a stereoactive 5s2 lone pair has been introduced into the lattice. As a result, Te4+-doped (C4H7N2)2SnCl6 displays broadband orange emission (∼640 nm) with a PL efficiency of ∼46% at RT. Interestingly, Te4+-doped (C4H7N2)2SnCl6 shows triple emission bands at 80 K, which could be due to the synergistic effect of the organic cations and the self-trapped state induced by Te4+. Additionally, high-performance white light-emitting diodes were prepared using Te4+-doped (C4H7N2)2SnCl6, revealing the potential of this material for lighting applications. This study provides new insight into the PL mechanism of Sn4+-based metal-halide hybrids and thus facilitates the design and development of eco-friendly light-emitting metal halides.

2.
Small ; 19(32): e2301011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066705

RESUMO

Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2 /WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2 /WO3-x -FeOx /Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

3.
Soft Matter ; 18(18): 3546-3556, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35445678

RESUMO

One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.

4.
BMC Urol ; 22(1): 160, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192737

RESUMO

INTRODUCTION: Cholelithiasis represents a known risk factor for digestive system neoplasm. Few studies reported the association between cholelithiasis and the risk of prostate cancer (PCa), and the results were controversial. METHODS: We reviewed the medical records of the Second Affiliated Hospital of Chongqing Medical University Hospital to perform a retrospective matched case-control study, which included newly diagnosed 221 PCa patients and 219 matched controls. Logistic regression was applied to compare cholelithiasis exposure and adjusted for confounding factors. Additionally, we conducted a meta-analysis pooling this and published studies further to evaluate the association between cholelithiasis and PCa risk. Related ratio (RR) and 95% confidence interval (95%CI) were used to assess the strength of associations. RESULTS: Our case-control study showed that cholelithiasis was associated with a higher incidence of PCa (OR = 1.87, 95% CI: 1.06-3.31) after multivariable adjustment for covariates. The incidence of PCa was increased in patients with gallstones but not cholecystectomy. 7 studies involving 80,403 individuals were included in the meta-analysis. Similarly, the results demonstrated that cholelithiasis was associated with an increased risk of PCa (RR = 1.35, 95%CI: 1.17-1.56) with moderate-quality evidence. Cholelithiasis patients with low BMI increased the PCa incidence. Moreover, Subgroup analysis based on region showed that cholelithiasis was associated with PCa in Europe (RR = 1.24, 95%CI 1.03-1.51) and Asia (RR = 1.32, 95%CI 1.24-1.41). CONCLUSIONS: The results suggested an association between cholelithiasis and the risk of PCa. There was no significant relationship between cholecystectomy therapy and PCa risk. Further cohort studies should be conducted to demonstrate the results better.


Assuntos
Colelitíase , Neoplasias da Próstata , Estudos de Casos e Controles , Colecistectomia/efeitos adversos , Colelitíase/complicações , Colelitíase/epidemiologia , Humanos , Masculino , Neoplasias da Próstata/complicações , Estudos Retrospectivos , Fatores de Risco
5.
Andrologia ; 54(10): e14535, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35838446

RESUMO

To explore the association between male infertility and hypertension risk, a meta-analysis and systematic review was conducted. Observational studies were sought in Medline, PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure up to April 30, 2021. Two independent reviewers selected available studies and extracted the data. The association between male infertility and hypertension risk was estimated by calculating the relative risk (RR) and 95% confidence interval (95% CI) using Stata12.0 statistical software. A total of seven studies were included in this meta-analysis, including 102,152 patients and 636,645 healthy individuals. The results demonstrated that male infertility was significantly associated with increased hypertension incidence (RR = 1.08; 95% CI 1.02-1.14; p = 0.004), with moderate-quality evidence. A subgroup analysis based on region showed that a positive association was observed in Europe but not the United States or Asia. This positive association was further confirmed in a cohort study, but not in a case-control study. After adjusting for potential confounders, male infertility was still significantly associated with hypertension risk (RR = 1.06, 95% CI 1.03-1.09). In conclusion, our findings suggest that male infertility increases the risk of hypertension incidence. However, further studies are needed to provide more conclusive evidence.


Assuntos
Hipertensão , Infertilidade Masculina , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Hipertensão/complicações , Hipertensão/epidemiologia , Incidência , Infertilidade Masculina/epidemiologia , Masculino
6.
Small ; 17(39): e2103176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405523

RESUMO

2D transition metal oxides (TMO) nanosheets have attracted considerable attention in both fundamental research and practical applications. Herein, a convenient programmable and scalable carbonate crystals templating synthesis is developed to produce high-quality self-hybrid TMO nanosheets (Si-WO3- x , Tax Oy , Mnx Oy ) and their respective polymetallic oxide hybrid nanosheets with tunable composition, low-cost and high-yield. Taking tungsten oxide nanosheets as example, silicotungstic acid precursor is in situ converted into tungsten oxide nanosheets like scales on the surface of calcium carbonate crystals through the simple soaking-drying-calcination process, and after selectively dissolving calcium carbonate by etching, the dispersive tungsten oxide nanosheets with unique self-hybrid Si-doped h-WO3 /ε-WO3 /WO2 compositions are obtained, which show excellent acetone gas-sensing performances at low temperatures. This carbonate-template method opens up the possibility to economically produce various functional TMO nanosheets with specific compositions for diverse applications.

7.
Nat Mater ; 19(2): 203-211, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31792425

RESUMO

Assemblies of metal oxide nanowires in 3D stacks can enable the realization of nanodevices with tailored conductivity, porous structure and a high surface area. Current fabrication methods require complicated multistep procedures that involve the initial preparation of nanowires followed by manual assembly or transfer printing, and thus lack synthesis flexibility and controllability. Here we report a general synthetic orthogonal assembly approach to controllably construct 3D multilayer-crossed metal oxide nanowire arrays. Taking tungsten oxide semiconducting nanowires as an example, we show the spontaneous orthogonal packing of composite nanorods of poly(ethylene oxide)-block-polystyrene and silicotungstic acid; the following calcination gives rise to 3D cross-stacked nanowire arrays of Si-doped metastable ε-phase WO3. This nanowire stack framework was also tested as a gas detector for the selective sensing of acetone. By using other polyoxometallates, this fabrication method for woodpile-like 3D nanostructures can also be generalized to different doped metal oxide nanowires, which provides a way to manipulate their physical properties for various applications.

8.
BMC Surg ; 21(1): 335, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488715

RESUMO

BACKGROUND: The coexistence of primary hyperparathyroidism and papillary thyroid carcinoma (PTC) is common and may be associative with more aggressive PTC, with higher rates of extrathyroidal extension and multicentricity. However, it is unclear whether secondary hyperparathyroidism (SHPT) is associated with more invasive PTC in terms of morbidity, tumor pathological characteristics, and prognosis. The aim of this study was to evaluate the rate and tumor characteristics of PTC in patients with SHPT. METHODS: A total of 531 patients diagnosed with SHPT who underwent surgery from August 2013 to December 2018 at the First Affiliated Hospital of Zhejiang University were evaluated retrospectively. Patient demographics, surgical records, and follow-up information were recorded and analyzed. Control subjects were matched to the enrolled patients in a 1:4 ratio in terms of age, sex and pathological subtype. RESULTS: Among the 531 patients with SHPT who underwent surgery, 34 had coexisting PTC and PTC + SHPT (6.4%). The mean tumor diameter in the PTC + SHPT group was smaller than that in the PTC group (5.57 mm vs 9.00 mm, p < 0.001). The proportion of papillary thyroid micro-carcinoma in the PTC + SHPT group was significantly higher than that in the PTC group (29 [85.29%] vs. 86[63.24%], p = 0.014). There were no statistically significant differences between groups in terms of tumor multicentricity (15 [44.12%] vs 39 [28.68%], p = 0.066), tumor bilaterality (9 [26.47%] vs. 29 [21.32%], p = 0.499), tumor extrathyroidal extension (2 [5.88%] vs. 19 [13.97%], p = 0.255), or lymph node (LN) metastasis rate (12 [35.29%] vs. 49 [36.03%], p = 1.000). However, the PTC + SHPT and PTC groups were significantly different in terms of contralateral thyroidectomy (10 [29.41%] vs. 70 [51.47%], p = 0.023) and lymph node dissection (22 [64.71%] vs. 125 [91.91%], p < 0.001).There was no significant difference between the PTC + SHPT and PTC groups in terms of prognostic staging (33 [97.06%] vs. 122 [89.71%], p = 0.309) or recurrence (mean follow-up time: 36 months vs. 39 months, p = 0.33). CONCLUSIONS: The prevalence of PTC is high in patients with SHPT; compared with PTC in the general population, most papillary thyroid carcinomas with SHPT are occult thyroid carcinomas and present no significant difference in terms of tumor pathological features and prognostic staging. It is necessary for surgeons to perform more adequate preoperative examination and be more careful during surgery to avoid missing the coexistence of PTC in patients with SHPT.


Assuntos
Carcinoma Papilar , Hiperparatireoidismo Secundário , Neoplasias da Glândula Tireoide , Carcinoma Papilar/complicações , Carcinoma Papilar/cirurgia , Humanos , Recidiva Local de Neoplasia/epidemiologia , Estudos Retrospectivos , Câncer Papilífero da Tireoide/complicações , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia
9.
Chem Soc Rev ; 49(4): 1173-1208, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31967137

RESUMO

Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.

10.
Small ; 16(46): e2004772, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33107204

RESUMO

Semiconducting metal oxides-based gas sensors with the capability to detect trace gases at low operating temperatures are highly desired in applications such as wearable devices, trace pollutant detection, and exhaled breath analysis, but it still remains a great challenge to realize this goal. Herein, a multi-component co-assembly method in combination with pore engineering strategy is proposed. By using bi-functional (3-mercaptopropyl) trimethoxysilane (MPTMS) that can co-hydrolyze with transition metal salt and meanwhile coordinate with gold precursor during their co-assembly with PEO-b-PS copolymers, ordered mesoporous SiO2 -WO3 composites with highly dispersed Au nanoparticles of 5 nm (mesoporous SiO2 -WO3 /Au) are straightforward synthesized. This multi-component co-assembly process avoids the aggregation of Au nanoparticles and pore blocking in conventional post-loading method. Furthermore, through controlled etching treatment, a small portion of silica can be removed from the pore wall, resulting in mesoporous SiO2 -WO3 /Au with increased specific surface area (129 m2  g-1 ), significantly improved pore connectivity, and enlarged pore window (>4.3 nm). Thanks to the presence of well-confined Au nanoparticles and ε-WO3 , the mesoporous SiO2 -WO3 /Au based gas sensors exhibit excellent sensing performance toward ethanol with high sensitivity (Ra /Rg = 2-14 to 50-250 ppb) at low operating temperature (150 °C).

11.
Small ; 15(39): e1903058, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389182

RESUMO

Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx ) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation-induced co-assembly process is employed to design ordered mesoporous Cex Zr1- x O2 (0 ≤ x ≤ 1) solid solutions by using high-molecular-weight poly(ethylene oxide)-block-polystyrene as the template. The obtained mesoporous Cex Zr1- x O2 possesses high surface area (60-100 m2 g-1 ) and large pore size (12-15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8 Zr0.2 O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well-interconnected pore structure of the mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/Cex Zr1- x O2 -s with small pore size (3.8 nm), ordered mesoporous Pt/Cex Zr1- x O2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.

12.
Small ; 15(46): e1904240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31550086

RESUMO

Controllable and efficient synthesis of noble metal/transition-metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane-assisted one-pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated-free noble metal nanoparticles, including Au/WO3 , Au/TiO2 , Au/NbOx , and Pt/WO3 . 3-mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2 PtCl4 ) by mercapto (SH) groups, resulting in coassembly with poly(ethylene oxide)-b-polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14-20 nm), high specific surface area (61-138 m2 g-1 ), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3 , in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε-phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair /Rgas = 36-50 ppm of ethanol), high selectivity, and excellent low-concentration detection capability (down to 50 ppb) at low working temperature (200 °C).

13.
J Am Chem Soc ; 139(30): 10365-10373, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28683546

RESUMO

Foodborne pathogens like Listeria monocytogenes can cause various illnesses and pose a serious threat to public health. They produce species-specific microbial volatile organic compounds, i.e., the biomarkers, making it possible to indirectly measure microbial contamination in foodstuff. Herein, highly ordered mesoporous tungsten oxides with high surface areas and tunable pores have been synthesized and used as sensing materials to achieve an exceptionally sensitive and selective detection of trace Listeria monocytogenes. The mesoporous WO3-based chemiresistive sensors exhibit a rapid response, superior sensitivity, and highly selective detection of 3-hydroxy-2-butanone. The chemical mechanism study reveals that acetic acid is the main product generated by the surface catalytic reaction of the biomarker molecule over mesoporous WO3. Furthermore, by using the mesoporous WO3-based sensors, a rapid bacteria detection was achieved, with a high sensitivity, a linear relationship in a broad range, and a high specificity for Listeria monocytogenes. Such a good gas sensing performance foresees the great potential application of mesoporous WO3-based sensors for fast and effective detection of microbial contamination for the safety of food, water safety and public health.


Assuntos
Listeria monocytogenes/isolamento & purificação , Óxidos/química , Tungstênio/química , Cristalização , Óxidos/síntese química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
14.
ACS Appl Mater Interfaces ; 16(14): 17563-17573, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551503

RESUMO

Hydrogen generation is one of the crucial technologies to realize sustainable energy development, and the design of advanced catalysts with efficient interfacial sites and fast mass transfer is significant for hydrogen evolution. Herein, an in situ coassembly strategy was proposed to engineer a cerium-doped ordered mesoporous titanium oxide (mpCe/TiO2), of which the abundant oxygen vacancies (Ov) and highly exposed active pore walls contribute to good stability of ultrasmall Pt nanoclusters (NCs, ∼ 1.0 nm in diameter) anchored in the uniform mesopores (ca. 20 nm). Consequently, the tailored mpCe/TiO2 with 0.5 mol % Ce-doping-supported Pt NCs (Pt-mpCe/TiO2-0.5) exhibits superior H2 evolution performance toward the water-gas shift reaction with a 0.73 molH2·s-1·molPt-1 H2 evolution rate at 200 °C, which is almost 6-fold higher than the Pt-mpTiO2 (0.13 molH2·s-1·molPt-1 H2). Density functional theory calculations confirm that the structure of Ce-doped TiO2 with Ce coordinated to six O atoms by substituting Ti atoms is thermodynamically favorable without the deformation of Ti-O bonds. The Ov generated by the six O atom-coordinated Ce doping is highly active for H2O dissociation with an energy barrier of 2.18 eV, which is obviously lower than the 2.37 eV for the control TiO2. In comparison with TiO2, the resultant Ce/TiO2 support acts as a superior electron acceptor for Pt NCs and causes electron deficiency at the Pt/support interface with a 0.17 eV downshift of the Pt d-band center, showing extremely obvious electronic metal-support interaction (EMSI). As a result, abundant and hyperactive Ti3+-Ov(-Ce3+)-Ptδ+ interfacial sites are formed to significantly promote the generation of CO2 and H2 evolution. In addition, the stronger EMSI between Pt NCs and mpCe/TiO2-0.5 than that between Pt and mpTiO2 contributes to the superior self-enhanced catalytic performance during the cyclic test, where the CO conversion at 200 °C increases from 72% for the fresh catalyst to 99% for the used one. These findings reveal the subtle relationship between the mesoporous metal oxide-metal composite catalysts with unique chemical microenvironments and their catalytic performance, which is expected to inspire the design of efficient heterogeneous catalysts.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39196753

RESUMO

In recent years, pulsed magnetic field (PMF) have attracted significant attention as a non-invasive electroporation method in the biomedical field. To further explore the biomedical effects generated by oscillating PMF, we designed a novel PMF generator for biomedical research. Based on resonance principles, the designed generator outputs sinusoidal oscillating PMF. To validate the feasibility and application value of the designed topology, a miniaturized platform was constructed using a selected multi-turn solenoid coil. The output performance of the generator was tested under different discharge voltage levels. The results revealed that the current multiplication factor remained consistently around 2 times, with the energy efficiency and circuit quality factor maintained at 82% and above 4.5, respectively. In addition, the generator's ability to flexibly modulate the number of pulse oscillations was demonstrated. The compatibility of the designed coil parameters and generator circuit parameters was analyzed, with tests on the effects of coil resistance and switch action time on the generator's output performance. Based on the magnetic field action platform, a simulation model of the actual scale coil was established. The spatial and temporal distribution of the magnetic field, induced electric field, and power transmission in the target area were described from multiple angles. Finally, biological experiments conducted using the constructed generator revealed the synergistic effect of sinusoidal oscillating PMF combined with drugs in tumor cell killing.

16.
J Ethnopharmacol ; 332: 118321, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735418

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps has a long medicinal history as a nourishing herb in traditional Chinese medicine (TCM). Ischemic cardio-cerebrovascular diseases (CCVDs), including cerebral ischemic/reperfusion injury (CI/RI) and myocardial ischemic/reperfusion injury (MI/RI), are major contributors to mortality and disability in humans. Numerous studies have indicated that Cordyceps or its artificial substitutes have significant bioactivity on ischemic CCVDs, however, there is a lack of relevant reviews. AIM OF THE STUDY: This review was conducted to investigate the chemical elements, pharmacological effects, clinical application and drug safety of Cordycepson ischemic CCVDs. MATERIALS AND METHODS: A comprehensive search was conducted on the Web of Science, PubMed, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases using the keywords "Cordyceps", "Cerebral ischemic/reperfusion injury", and "Myocardial ischemic/reperfusion injury" or their synonyms. The retrieved literature was then categorized and summarized. RESULTS: The study findings indicated that Cordyceps and its bioactive components, including adenosine, cordycepin, mannitol, polysaccharide, and protein, have the potential to protect against CI/RI and MI/RI by improving blood perfusion, mitigating damage from reactive oxygen species, suppressing inflammation, preventing cellular apoptosis, and promoting tissue regeneration. Individually, Cordyceps could reduce neuronal excitatory toxicity and blood-brain barrier damage caused by cerebral ischemia. It can also significantly improve cardiac energy metabolism disorders and inhibit calcium overload caused by myocardial ischemia. Additionally, Cordyceps exerts a significant preventive or curative influence on the factors responsible for heart/brain ischemia, including hypertension, thrombosis, atherosclerosis, and arrhythmia. CONCLUSION: This study demonstrates Cordyceps' prospective efficacy and safety in the prevention or treatment of CI/RI and MI/RI, providing novel insights for managing ischemic CCVDs.


Assuntos
Cordyceps , Humanos , Cordyceps/química , Animais , Medicina Tradicional Chinesa/métodos , Isquemia Encefálica/tratamento farmacológico
17.
Sci Rep ; 14(1): 4021, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369554

RESUMO

Allergic rhinitis (AR) remains a major health problem worldwide. Compared with traditional oral drugs, nasal administration avoids first-pass metabolism and achieve faster and more effective efficacy. In this study, we used the ion crosslinking method to prepare quercetin-chitosan nasal adaptive nanomedicine (QCS) delivery system and evaluated in the treatment of allergic rhinitis mice models. The obtained positively charged nanoparticles with a particle size of 229.2 ± 0.2 nm have excellent characteristics in encapsulation efficiency (79.604%), drug loading rate (14.068%), drug release (673.068 µg) and stability(> 7 days). Excitingly, QCS treatment significantly reduced the number of sneezing and nasal rubbing events in AR mice, while reducing the levels of inflammatory factors such as immunoglobulin E (IgE), interleukin (IL)-17, tumor necrosis factor (TNF)-α, and (IL)-6 to alleviate AR symptoms. Hematoxylin-eosin (HE) staining also showed the damaged nasal mucosa was improved. These experimental results suggest that QCS can effectively suppress allergic inflammation in a mouse model and hold promise as a therapeutic option for allergic rhinitis.


Assuntos
Quitosana , Nanopartículas , Rinite Alérgica , Camundongos , Animais , Quitosana/farmacologia , Quercetina/farmacologia , Rinite Alérgica/metabolismo , Mucosa Nasal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Citocinas/metabolismo
18.
ACS Appl Mater Interfaces ; 15(12): 15721-15731, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917766

RESUMO

Hydrogen as an important clean energy source with a high energy density has attracted extensive attention in fuel cell vehicles and industrial production. However, considering its flammable and explosive property, gas sensors are desperately desired to efficiently monitor H2 concentration in practical applications. Herein, a facile polymerization-induced aggregation strategy was proposed to synthesize uniform Si-doped mesoporous WO3 (Si-mWO3) microspheres with tunable sizes. The polymerization of the melamine-formaldehyde resin prepolymer (MF prepolymer) in the presence of silicotungstic acid hydrate (abbreviated as H4SiW) leads to uniform MF/H4SiW hybrid microspheres, which can be converted into Si-mWO3 microspheres through a simple thermal decomposition treatment process. In addition, benefiting from the pore confinement effect, monodispersed Pd-decorated Si-mWO3 microspheres (Pd/Si-mWO3) were subsequently synthesized and applied as sensitive materials for the sensing and detection of hydrogen. Owing to the oxygen spillover effect of Pd nanoparticles, Pd/Si-mWO3 enables adsorption of more oxygen anions than pure mWO3. These Pd nanoparticles dispersed on the surface of Si-mWO3 accelerated the dissociation of hydrogen and promoted charge transfer between Pd nanoparticles and WO3 crystal particles, which enhanced the sensing sensitivity toward H2. As a result, the gas sensor based on Pd/Si-mWO3 microspheres exhibited excellent selectivity and sensitivity (Rair/Rgas = 33.5) to 50 ppm H2 at a relatively low operating temperature (210 °C), which was 30 times higher than that of the pure Si-mWO3 sensor. To develop intelligent sensors, a portable sensor module based on Pd/Si-mWO3 in combination with wireless Bluetooth connection was designed, which achieved real-time monitoring of H2 concentration, opening up the possibility for use as intelligent H2 sensors.

19.
Adv Sci (Weinh) ; 10(13): e2207514, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808714

RESUMO

Developing full-spectrum photocatalysts with simultaneous broadband light absorption, excellent charge separation, and high redox capabilities is becoming increasingly significant. Herein, inspired by the similarities in crystalline structures and compositions, a unique 2D-2D Bi4 O5 I2 /BiOBr:Yb3+ ,Er3+ (BI-BYE) Z-scheme heterojunction with upconversion (UC) functionality is successfully designed and fabricated. The co-doped Yb3+ and Er3+ harvest near-infrared (NIR) light and then convert it into visible light via the UC function, expanding the optical response range of the photocatalytic system. The intimate 2D-2D interface contact provides more charge migration channels and enhances the Förster resonant energy transfer of BI-BYE, leading to significantly improved NIR light utilization efficiency. Density functional theory (DFT) calculations and experimental results confirm that the Z-scheme heterojunction is formed and that this heterojunction endows the BI-BYE heterostructure with high charge separation and strong redox capability. Benefit from these synergies, the optimized 75BI-25BYE heterostructure exhibits the highest photocatalytic performance for Bisphenol A (BPA) degradation under full-spectrum and NIR light irradiation, outperforming BYE by 6.0 and 5.3 times, respectively. This work paves an effective approach for designing highly efficient full-spectrum responsive Z-scheme heterojunction photocatalysts with UC function.

20.
Sci Rep ; 12(1): 11242, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787635

RESUMO

To predict disease outcome in muscle-invasive bladder cancer (MIBC), we constructed a prognostic autophagy-related (PAR) lncRNA signature. Comprehensive bioinformatics analyses were performed using data from TCGA and GTEx databases. Univariate Cox, and least absolute shrinkage and selection operator regression analyses were also performed, based on differentially expressed genes, to identify PAR-related lncRNAs to establish the signature. Furthermore, the Kaplan-Meier OS curve and receiver operating characteristic curve analyses were performed and a nomogram was constructed, all of which together confirmed the strong predictive ability of the constructed signature. Patients with MIBC were then divided into high- and low-risk groups. Gene enrichment and immune infiltration analyses revealed the potential mechanisms in MIBC. We also further evaluated the signature of molecules related to immune checkpoints and the sensitivity toward chemotherapeutic agents and antitumor-targeted drugs to find better treatment prescriptions. We identified a number of PAR-related lncRNA signatures, including HCP5, AC024060.1, NEAT1, AC105942.1, XIST, MAFG-DT, and NR2F1-AS1, which could be valuable prognostic tools to develop more efficient, individualized drug therapies for MIBC patients.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Autofagia/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa