Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 72(24): 651-656, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319011

RESUMO

CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Genômica
2.
MMWR Morb Mortal Wkly Rep ; 72(25): 683-689, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347715

RESUMO

Although reinfections with SARS-CoV-2 have occurred in the United States with increasing frequency, U.S. epidemiologic trends in reinfections and associated severe outcomes have not been characterized. Weekly counts of SARS-CoV-2 reinfections, total infections, and associated hospitalizations and deaths reported by 18 U.S. jurisdictions during September 5, 2021-December 31, 2022, were analyzed overall, by age group, and by five periods of SARS-CoV-2 variant predominance (Delta and Omicron [BA.1, BA.2, BA.4/BA.5, and BQ.1/BQ.1.1]). Among reported reinfections, weekly trends in the median intervals between infections and frequencies of predominant variants during previous infections were calculated. As a percentage of all infections, reinfections increased substantially from the Delta (2.7%) to the Omicron BQ.1/BQ.1.1 (28.8%) periods; during the same periods, increases in the percentages of reinfections among COVID-19-associated hospitalizations (from 1.9% [Delta] to 17.0% [Omicron BQ.1/BQ.1.1]) and deaths (from 1.2% [Delta] to 12.3% [Omicron BQ.1/BQ.1.1]) were also substantial. Percentages of all COVID-19 cases, hospitalizations, and deaths that were reinfections were consistently higher across variant periods among adults aged 18-49 years compared with those among adults aged ≥50 years. The median interval between infections ranged from 269 to 411 days by week, with a steep decline at the start of the BA.4/BA.5 period, when >50% of reinfections occurred among persons previously infected during the Alpha variant period or later. To prevent severe COVID-19 outcomes, including those following reinfection, CDC recommends staying up to date with COVID-19 vaccination and receiving timely antiviral treatments, when eligible.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Vacinas contra COVID-19 , Hospitalização/tendências , Reinfecção/epidemiologia , Mortalidade Hospitalar
3.
Clin Infect Dis ; 75(1): e105-e113, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35213690

RESUMO

BACKGROUND: Estimating the cumulative incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for setting public health policies. We leveraged deidentified Massachusetts newborn screening specimens as an accessible, retrospective source of maternal antibodies for estimating statewide seroprevalence in a nontest-seeking population. METHODS: We analyzed 72 117 newborn specimens collected from November 2019 through December 2020, representing 337 towns and cities across Massachusetts. Seroprevalence was estimated for the Massachusetts population after correcting for imperfect test specificity and nonrepresentative sampling using Bayesian multilevel regression and poststratification. RESULTS: Statewide seroprevalence was estimated to be 0.03% (90% credible interval [CI], 0.00-0.11) in November 2019 and rose to 1.47% (90% CI: 1.00-2.13) by May 2020, following sustained SARS-CoV-2 transmission in the spring. Seroprevalence plateaued from May onward, reaching 2.15% (90% CI: 1.56-2.98) in December 2020. Seroprevalence varied substantially by community and was particularly associated with community percent non-Hispanic Black (ß = .024; 90% CI: 0.004-0.044); i.e., a 10% increase in community percent non-Hispanic Black was associated with 27% higher odds of seropositivity. Seroprevalence estimates had good concordance with reported case counts and wastewater surveillance for most of 2020, prior to the resurgence of transmission in winter. CONCLUSIONS: Cumulative incidence of SARS-CoV-2 protective antibody in Massachusetts was low as of December 2020, indicating that a substantial fraction of the population was still susceptible. Maternal seroprevalence data from newborn screening can inform longitudinal trends and identify cities and towns at highest risk, particularly in settings where widespread diagnostic testing is unavailable.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Teorema de Bayes , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Recém-Nascido , Triagem Neonatal , Estudos Retrospectivos , Estudos Soroepidemiológicos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201400

RESUMO

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Assuntos
Asma , COVID-19 , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Infecções Respiratórias , Adolescente , Asma/epidemiologia , Viroses do Sistema Nervoso Central , Criança , Surtos de Doenças , Infecções por Enterovirus/epidemiologia , Humanos , Mielite/epidemiologia , Doenças Neuromusculares , Infecções Respiratórias/epidemiologia , Rhinovirus , Estados Unidos/epidemiologia
5.
Nature ; 589(7840): 26-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33173216
6.
PLoS Genet ; 15(12): e1008532, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869330

RESUMO

The human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems. In an effort to better understand the evolution and function of protein glycosylation operating there, we aimed to determine if other human-restricted, Neisseria species similarly glycosylate proteins and if so, to assess the levels of glycoform diversity. Comparative genomics revealed the conservation of a subset of genes minimally required for O-linked protein glycosylation glycan and established those pgl genes as core genome constituents of the genus. In conjunction with mass spectrometric-based glycan phenotyping, we found that extant glycoform repertoires in N. gonorrhoeae, N. meningitidis and the closely related species N. polysaccharea and N. lactamica reflect the functional replacement of a progenitor glycan biosynthetic pathway. This replacement involved loss of pgl gene components of the primordial pathway coincident with the acquisition of two exogenous glycosyltransferase genes. Critical to this discovery was the identification of a ubiquitous but previously unrecognized glycosyltransferase gene (pglP) that has uniquely undergone parallel but independent pseudogenization in N. gonorrhoeae and N. meningitidis. We suggest that the pseudogenization events are driven by processes of compositional epistasis leading to gene decay. Additionally, we documented instances where inter-species recombination influences pgl gene status and creates discordant genetic interactions due ostensibly to the multi-locus nature of pgl gene networks. In summary, these findings provide a novel perspective on the evolution of protein glycosylation systems and identify phylogenetically informative, genetic differences associated with Neisseria species.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Genômica , Glicosilação , Espectrometria de Massas , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Filogenia , Polissacarídeos/biossíntese
7.
Chemistry ; 25(48): 11240-11245, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31276254

RESUMO

Reacting hydrazones of arylaldehydes with Togni's CF3 -benziodoxolone reagent, in the presence of potassium hydroxide and cesium fluoride, induces a denitrogenative hydrotrifluoromethylation event to produce (2,2,2-trifluoroethyl)arenes. This novel reaction was tolerant to many electronically-diverse functional groups and substitution patterns, as well as naphthyl- and heteroaryl-derived substrates. Advantages of this process include the easy access to hydrazone precursors on a large scale, speed and operational simplicity, and being transition metal-free.

8.
Am J Physiol Cell Physiol ; 314(2): C211-C227, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118026

RESUMO

Carbon monoxide (CO) is an endogenously produced gas that has gained recognition as a biological signal transduction effector with properties similar, but not identical, to that of nitric oxide (NO). CO, which binds primarily to heme iron, may activate the hemoprotein guanylate cyclase, although with lower potency than NO. Furthermore, CO can modulate the activities of several cellular signaling molecules such as p38 MAPK, ERK1/2, JNK, Akt, NF-κB, and others. Emerging studies suggest that mitochondria, the energy-generating organelle of cells, represent a key target of CO action in eukaryotes. Dose-dependent modulation of mitochondrial function by CO can result in alteration of mitochondrial membrane potential, mitochondrial reactive oxygen species production, release of proapoptotic and proinflammatory mediators, as well as the inhibition of respiration at high concentration. CO, through modulation of signaling pathways, can impact key biological processes including autophagy, mitochondrial biogenesis, programmed cell death (apoptosis), cellular proliferation, inflammation, and innate immune responses. Inhaled CO is widely known as an inhalation hazard due to its rapid complexation with hemoglobin, resulting in impaired oxygen delivery to tissues and hypoxemia. Despite systemic and cellular toxicity at high concentrations, CO has demonstrated cyto- and tissue-protective effects at low concentration in animal models of organ injury and disease. These include models of acute lung injury (e.g., hyperoxia, hypoxia, ischemia-reperfusion, mechanical ventilation, bleomycin) and sepsis. The success of CO as a candidate therapeutic in preclinical models suggests potential clinical application in inflammatory and proliferative disorders, which is currently under evaluation in clinical trials.


Assuntos
Monóxido de Carbono/farmacologia , Pneumopatias/tratamento farmacológico , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Monóxido de Carbono/metabolismo , Monóxido de Carbono/toxicidade , Relação Dose-Resposta a Droga , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais/efeitos dos fármacos
9.
Crit Care Med ; 46(5): 791-798, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29443814

RESUMO

OBJECTIVES: Sterile and infectious critical illnesses often result in vasoplegic shock and a robust systemic inflammatory response that are similar in presentation. The innate immune system is at the center of the response to both infectious and traumatic insults. Damage-associated molecular patterns are small molecules that are released from stressed or dying cells. Damage-associated molecular patterns activate pattern recognition receptors and coordinate the leading edge of the innate immune response. This review introduces the concept of damage-associated molecular patterns and how they activate a systemic inflammatory response, specifically in trauma, neurologic injury, and infection. It also explores how, when carried to extremes, damage-associated molecular patterns may even perpetuate multisystem organ failure. DATA SOURCES: Basic and clinical studies were obtained from a PubMed search through August 2017. STUDY SELECTION: Articles considered include original articles, review articles, and conference proceedings. DATA EXTRACTION: An analysis of scientific, peer-reviewed data was performed. High quality preclinical and clinical studies adjudicated by the authors were included and summarized. DATA SYNTHESIS: Pattern recognition receptors respond to damage-associated molecular patterns and then activate inflammatory pathways. Damage-associated molecular patterns have been linked to the recruitment of sentinel leukocytes and the initiation of the inflammatory cascade. Damage-associated molecular patterns have been linked to many conditions in critical care illnesses. Preclinical models have added insight into how they may mediate distant organ dysfunction. CONCLUSIONS: Damage-associated molecular pattern activation and release is an important research for intensive care practitioners. It will add to our understanding of the phase and state of the innate immune response to an insult. Early work is encouraging. However, only with improved understanding of damage-associated molecular pattern activation and function, we can perhaps hope to target damage-associated molecular patterns as diagnostic and/or therapeutic modalities in the future.


Assuntos
Alarminas/fisiologia , Unidades de Terapia Intensiva , Sistema Nervoso Central/lesões , Estado Terminal , Homeostase , Humanos , Imunidade Inata/fisiologia , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/fisiopatologia
10.
J Clin Microbiol ; 55(12): 3374-3383, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28904187

RESUMO

Neisseria meningitidis, typically a resident of the oro- or nasopharynx and the causative agent of meningococcal meningitis and meningococcemia, is capable of invading and colonizing the urogenital tract. This can result in urethritis, akin to the syndrome caused by its sister species, N. gonorrhoeae, the etiologic agent of gonorrhea. Recently, meningococcal strains associated with outbreaks of urethritis were reported to share genetic characteristics with the gonococcus, raising the question of the extent to which these strains contain features that promote adaptation to the genitourinary niche, making them gonococcus-like and distinguishing them from other N. meningitidis strains. Here, we analyzed the genomes of 39 diverse N. meningitidis isolates associated with urethritis, collected independently over a decade and across three continents. In particular, we characterized the diversity of the nitrite reductase gene (aniA), the factor H-binding protein gene (fHbp), and the capsule biosynthetic locus, all of which are loci previously suggested to be associated with urogenital colonization. We observed notable diversity, including frameshift variants, in aniA and fHbp and the presence of intact, disrupted, and absent capsule biosynthetic genes, indicating that urogenital colonization and urethritis caused by N. meningitidis are possible across a range of meningococcal genotypes. Previously identified allelic patterns in urethritis-associated N. meningitidis strains may reflect genetic diversity in the underlying meningococcal population rather than novel adaptation to the urogenital tract.


Assuntos
Variação Genética , Genoma Bacteriano , Genótipo , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Uretrite/microbiologia , Adulto , Antígenos de Bactérias/genética , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Neisseria meningitidis/isolamento & purificação , Nitrito Redutases/genética , Adulto Jovem
11.
Crit Care ; 21(1): 73, 2017 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-28342442

RESUMO

BACKGROUND: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Task Force recently introduced a new clinical score termed quick Sequential (Sepsis-related) Organ Failure Assessment (qSOFA) for identification of patients at risk of sepsis outside the intensive care unit (ICU). We attempted to compare the discriminatory capacity of the qSOFA versus the Systemic Inflammatory Response Syndrome (SIRS) score for predicting mortality, ICU-free days, and organ dysfunction-free days in patients with suspicion of infection outside the ICU. METHODS: The Weill Cornell Medicine Registry and Biobank of Critically Ill Patients is an ongoing cohort of critically ill patients, for whom biological samples and clinical information (including vital signs before and during ICU hospitalization) are prospectively collected. Using such information, qSOFA and SIRS scores outside the ICU (specifically, within 8 hours before ICU admission) were calculated. This study population was therefore comprised of patients in the emergency department or the hospital wards who had suspected infection, were subsequently admitted to the medical ICU and were included in the Registry and Biobank. RESULTS: One hundred fifty-two patients (67% from the emergency department) were included in this study. Sixty-seven percent had positive cultures and 19% died in the hospital. Discrimination of in-hospital mortality using qSOFA [area under the receiver operating characteristic curve (AUC), 0.74; 95% confidence intervals (CI), 0.66-0.81] was significantly greater compared with SIRS criteria (AUC, 0.59; 95% CI, 0.51-0.67; p = 0.03). The qSOFA performed better than SIRS regarding discrimination for ICU-free days (p = 0.04), but not for ventilator-free days (p = 0.19), any organ dysfunction-free days (p = 0.13), or renal dysfunction-free days (p = 0.17). CONCLUSIONS: In patients with suspected infection who eventually required admission to the ICU, qSOFA calculated before their ICU admission had greater accuracy than SIRS for predicting mortality and ICU-free days. However, it may be less clear whether qSOFA is also better than SIRS criteria for predicting ventilator free-days and organ dysfunction-free days. These findings may help clinicians gain further insight into the usefulness of qSOFA.


Assuntos
Escores de Disfunção Orgânica , Sepse/diagnóstico , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , APACHE , Idoso , Estado Terminal/epidemiologia , Serviço Hospitalar de Emergência/organização & administração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Quartos de Pacientes/organização & administração , Quartos de Pacientes/estatística & dados numéricos , Prognóstico , Sistema de Registros/estatística & dados numéricos , Medição de Risco/métodos , Medição de Risco/normas , Sepse/epidemiologia , Sepse/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia
12.
Am J Respir Cell Mol Biol ; 54(5): 636-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900794

RESUMO

Obesity-related disease is a significant source of premature death and economic burden globally. It is also a common comorbidity in patients suffering from lung disease, affecting both severity and treatment success. However, this complex association between obesity and the lung is poorly understood. Autophagy is a self-recycling homeostatic process that has been linked to beneficial or deleterious effects, depending on the specific lung disease. Obesity affects autophagy in a tissue-specific manner, activating autophagy in adipocytes and impairing autophagy in hepatocytes, immune cells, and pancreatic ß-cells, among others. Obesity is also characterized by chronic low-grade inflammation that can be modulated by the pro- and antiinflammatory effects of the autophagic machinery. Scant evidence exists regarding the impact of autophagy in obesity-related lung diseases, but there are communal pathways that could be related to disease pathogenesis. Important signaling molecules in obesity, including IL-17, leptin, adiponectin, NLRP3 inflammasome, and TLR-4, have been implicated in the pathogenesis of lung disease. These mediators are known to be modulated by autophagy activity. In this perspective, we highlight the recent advances in the understanding of autophagy in obesity-related conditions, as well as the potential mechanisms that can link autophagy and obesity in the pathogenesis of lung disease.


Assuntos
Autofagia , Pneumopatias/complicações , Pneumopatias/patologia , Obesidade/complicações , Obesidade/patologia , Animais , Humanos , Modelos Biológicos
13.
Curr Opin Infect Dis ; 29(2): 205-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836374

RESUMO

PURPOSE OF REVIEW: Latent tuberculosis infection (LTBI) may affect over two billion individuals and serves as a potential reservoir for future active tuberculosis. The identification and treatment of LTBI in those at highest risk for progression is an essential part of tuberculosis control. RECENT FINDINGS: Interferon-γ release assays are increasingly used for targeted testing and diagnosis of latent disease. The performance of these immunodiagnostic tests has been studied in various groups and may be better than the tuberculin skin test in certain populations. Ongoing research is focused on new biomarkers that may diagnose LTBI or predict progression to active tuberculosis. Isoniazid preventive treatment is effective at reducing risk of active disease, but length of treatment and potential side-effects limit patient acceptance and compliance. Rifamycin-based regimens are increasingly studied as a shorter and perhaps less toxic alternative for preventive therapy. SUMMARY: Identification of those with LTBI is important as it allows treatment of those at highest risk of progression to active disease and thus decreases the overall burden of tuberculosis. The development of new immunodiagnostics may further improve identification of those at risk and alternative medication regimens may increase compliance with and efficacy of preventive therapy.


Assuntos
Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Antituberculosos/uso terapêutico , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/tendências , Humanos , Testes de Liberação de Interferon-gama/métodos
15.
Chest ; 165(6): 1415-1420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211701

RESUMO

BACKGROUND: Endotracheal aspirates (ETAs) are widely used for microbiologic studies of the respiratory tract in intubated patients. However, they involve sampling through an established endotracheal tube using suction catheters, both of which can acquire biofilms that may confound results. RESEARCH QUESTION: Does standard clinical ETA in intubated patients accurately reflect the authentic lower airway bacterial microbiome? STUDY DESIGN AND METHODS: Comprehensive quantitative bacterial profiling using 16S rRNA V1-V2 gene sequencing was applied to compare bacterial populations captured by standard clinical ETA vs contemporaneous gold standard samples acquired directly from the lower airways through a freshly placed sterile tracheostomy tube. The study included 13 patients undergoing percutaneous tracheostomy following prolonged (median, 15 days) intubation. Metrics of bacterial composition, diversity, and relative quantification were applied to samples. RESULTS: Pre-tracheostomy ETAs closely resembled the gold standard immediate post-tracheostomy airway microbiomes in bacterial composition and community features of diversity and quantification. Endotracheal tube and suction catheter biofilms also resembled cognate ETA and fresh tracheostomy communities. INTERPRETATION: Unbiased molecular profiling shows that standard clinical ETA sampling has good concordance with the authentic lower airway microbiome in intubated patients.


Assuntos
Intubação Intratraqueal , Microbiota , RNA Ribossômico 16S , Traqueostomia , Humanos , Masculino , Feminino , Traqueostomia/métodos , Traqueostomia/instrumentação , Pessoa de Meia-Idade , Idoso , Biofilmes , Bactérias/isolamento & purificação , Bactérias/genética , Sucção
16.
Oncotarget ; 15: 288-300, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712741

RESUMO

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Assuntos
Aprendizado Profundo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Pessoa de Meia-Idade , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
17.
medRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883802

RESUMO

Background: Assessing COVID-19 vaccine effectiveness (VE) and severity of SARS-CoV-2 variants can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial genomic divergence from co-circulating XBB lineages. Methods: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated the effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. Results: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. Conclusions: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB lineage hospitalizations.

19.
Zootaxa ; 5258(2): 197-210, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37044602

RESUMO

Rocky shores typically exhibit a variety of sedentary and free-moving forms of epibionts associated with the shells of mussel basibionts. This paper provides a first report on epibiotic bryozoans found on shells of the invasive Mediterranean mussel, Mytilus galloprovincialis Lamarck. More than 2500 mussels were collected between December 2019 and October 2020 from rocky shores during low spring tides across the south-southeast coast of South Africa. Ten percent of these mussels hosted epibiotic bryozoans. We examined a subset of these epibiotised mussels to assess the diversity of bryozoans. Three encrusting cheilostome species were identified: Chaperia atypica n. sp., Celleporella hyalina (Linnaeus), and Hippomonavella sp. This new species is the first Chaperia with avicularia and the first South African species with ooecia. This study highlights the biological diversity of epibiotic bryozoans on mussel shells and, given their differences in microtopography, the possibility that invasive species can provide a new substratum for rare, overlooked or undescribed species of epibionts.


Assuntos
Briozoários , Mytilus , Animais , África do Sul , Biodiversidade , Espécies Introduzidas
20.
Sci Total Environ ; 865: 161184, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581263

RESUMO

Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south-southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature. Using in situ temperature logger data, we calculated the effective shore level for several sites by determining the duration of immersion and emersion. Summer and winter inshore water temperatures were linked to distance from the mussel's warm range edge (our proxy for an EF-associated stress gradient), suggesting that seasonality in temperature contributes to first order effects. The gradient in thermal stress clearly affected densities, but its influence on mussel size, shell degradation, and epibiosis was weaker. Relationships among mussel size, shell degradation, and epibiosis were more robust. Larger, older mussels had more degraded shells and more epibionts, with endolithic damage facilitating epibiosis. EF associated with a gradient in thermal stress directly limits the distribution, abundance, and size structure of mussel populations, with important indirect second and third order effects of parasitic disease and epibiont load, respectively.


Assuntos
Mytilus , Animais , Mytilus/fisiologia , Temperatura , Estresse Fisiológico , Dinâmica Populacional , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa