Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Environ Sci Technol ; 58(18): 7870-7879, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647530

RESUMO

Sparingly-soluble phosphate rock (PR), a raw material for P-fertilizer production, can be effectively utilized by the As-hyperaccumulator Pteris vittata but not most plants. In this study, we investigated the associated mechanisms by measuring dissolved organic carbon (DOC) and acid phosphatase in the rhizosphere, and nutrient uptake and gene expression related to the As metabolism in P. vittata. The plants were grown in a soil containing 200 mg kg-1 As and/or 1.5% PR for 30 days. Compared to the As treatment, the P. vittata biomass was increased by 33% to 4.6 g plant-1 in the As+PR treatment, corresponding to 27% decrease in its frond oxidative stress as measured by malondialdehyde. Due to PR-enhanced DOC production in the rhizosphere, the Ca, P, and As contents in P. vittata fronds were increased by 17% to 9.7 g kg-1, 29% to 5.0 g kg-1, and 57% to 1045 mg kg-1 in the As+PR treatment, thereby supporting its better growth. Besides, PR-induced rhizosphere pH increase from 5.0 to 6.9 promoted greater P uptake by P. vittata probably via upregulating low-affinity P transporters PvPTB1;1/1;2 by 3.7-4.1 folds. Consequently, 29% lower available-P induced the 3.3-fold upregulation of high-affinity P transporter PvPht1;3 in the As+PR treatment, which was probably responsible for the 58% decrease in available-As content in the rhizosphere. Consistent with the enhanced As translocation and sequestration, arsenite antiporters PvACR3/3;3 were upregulated by 1.8-4.4 folds in the As+PR than As treatment. In short, sparingly-soluble PR enhanced the Ca, P, and As availability in P. vittata rhizosphere and improved their uptake via upregulating genes related to As metabolism, suggesting its potential application for improving phytoremediation in As-contaminated soils.


Assuntos
Arsênio , Fosfatos , Pteris , Rizosfera , Arsênio/metabolismo , Pteris/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Solo/química
2.
Environ Sci Technol ; 58(26): 11534-11541, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38865317

RESUMO

Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 µM AsIII or 10 µM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.


Assuntos
Arsênio , Nicotiana , Folhas de Planta , Plantas Geneticamente Modificadas , Nicotiana/metabolismo , Nicotiana/genética , Arsênio/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Biodegradação Ambiental , Poluentes do Solo/metabolismo
3.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
4.
Environ Sci Technol ; 58(17): 7346-7356, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624169

RESUMO

Arsenic (As) contamination in soil poses a potential threat to human health via crop uptake. As-hyperaccumulator Pteris vittata serves as a model plant to study As uptake and associated mechanisms. This study focuses on a novel P/AsV transport system mediated by low-affinity phosphate transporter-B 1 family (PTB1) in P. vittata. Here, we identified two plasma-membrane-localized PTB1 genes, PvPTB1;1/1;2, in vascular plants for the first time, which were 4.4-40-fold greater in expression in P. vittata than in other Pteris ferns. Functional complementation of a yeast P-uptake mutant and enhanced P accumulation in transgenic Arabidopsis thaliana confirmed their role in P uptake. Moreover, the expression of PvPTB1;1/1;2 facilitated the transport and accumulation of As in both yeast and A. thaliana shoots, demonstrating a comparable AsV uptake capacity. Microdissection-qPCR analysis and single-cell transcriptome analysis collectively suggest that PvPTB1;1/1;2 are specifically expressed in the epidermal cells of P. vittata roots. PTB1 may play a pivotal role in efficient P recycling during phytate secretion and hydrolysis in P. vittata roots. In summary, the dual P transport mechanisms consisting of high-affinity Pht1 and low-affinity PTB1 may have contributed to the efficient P/As uptake in P. vittata, thereby contributing to efficient phytoremediation for As-contaminated soils.


Assuntos
Arsênio , Proteínas de Transporte de Fosfato , Fosfatos , Pteris , Pteris/metabolismo , Pteris/genética , Arsênio/metabolismo , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Poluentes do Solo/metabolismo , Transporte Biológico
5.
Environ Res ; 243: 117842, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065384

RESUMO

The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Poeira/análise , Cádmio , Cidades , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Medição de Risco/métodos , Poluentes do Solo/análise
6.
Bull Environ Contam Toxicol ; 112(2): 27, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281165

RESUMO

There are growing concerns about elevated lead (Pb) levels in lip cosmetics, yet in China, the largest lip cosmetic market, recent Pb contamination in lip cosmetics and associated Pb exposure remain unclear. Here, we measured Pb levels of 29 popular lip cosmetics in China and conducted the bioaccessibility-corrected carcinogenic risk assessments and sensitivity analysis regarding Pb exposure for consumers using Monte Carlo simulation. The Pb concentrations of collected samples ranged from undetectable (< 0.05 µg/kg) to 0.21 mg/kg, all of which were well below the Pb concentration limit set for cosmetics in China (10 mg/kg). The 50th percentile incremental lifetime cancer risk (ILCR) of Pb in Chinese cosmetics (1.20E-07) was below the acceptable level (1E-06), indicating that the application of lip cosmetics and subsequent Pb exposure does not pose carcinogenic risks to consumers in most cases. The results of this study provide new insights into understanding the Pb risk in lip cosmetics.


Assuntos
Cosméticos , Metais Pesados , Carcinógenos/toxicidade , Carcinógenos/análise , Chumbo/análise , Lábio/química , Medição de Risco/métodos , Cosméticos/análise , China , Metais Pesados/análise , Monitoramento Ambiental
7.
Environ Sci Technol ; 57(48): 19463-19472, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943691

RESUMO

Prebiotics may stimulate beneficial gut microorganisms. However, it remains unclear whether they can lower the oral bioavailability of early life arsenic (As) exposure via regulating gut microbiota and altering As biotransformation along the gastrointestinal (GI) tract. In this study, weanling mice were exposed to arsenate (iAsV) via diet (7.5 µg As g-1) amended with fructooligosaccharides (FOS), galactooligosaccharides (GOS), and inulin individually at 1% and 5% (w/w). Compared to As exposure control mice, As concentrations in mouse blood, liver, and kidneys and As urinary excretion factor (UEF) were reduced by 43.7%-74.1% when treated with 5% GOS. The decrease corresponded to a significant proliferation of Akkermansia and Psychrobacter, reduced percentage of inorganic arsenite (iAsIII) and iAsV by 47.4% and 65.4%, and increased proportion of DMAV in intestinal contents by 101% in the guts of mice treated with 5% GOS compared to the As control group. In contrast, FOS and inulin either at l% or 5% did not reduce As concentration in mouse blood, liver, and kidneys or As UEF. These results suggest that GOS supplementation may be a gut microbiota-regulating approach to lower early life As exposure via stimulating the growth of Akkermansia and Psychrobacter and enhancing As methylation in the GI tract.


Assuntos
Arsênio , Microbioma Gastrointestinal , Camundongos , Animais , Inulina/metabolismo , Prebióticos , Fígado/metabolismo
8.
Environ Sci Technol ; 57(1): 190-200, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36521032

RESUMO

Phytate as a root exudate is rare in plants as it mainly serves as a P storage in the seeds; however, As-hyperaccumulator Pteris vittata effectively secretes phytate and utilizes phytate-P, especially under As exposure. This study investigated the effects of As on its phytate and phytase exudation and the impacts of As and/or phytate on each other's uptake in P. vittata through two hydroponic experiments. Under 10-100 µM arsenate (AsV), the exudation of phytate and phytase by P. vittata was increased by 50-72% to 20.4-23.4 µmol h-1 g-1 and by 28-104% to 18.6-29.5 nmol h-1 plant-1, but they were undetected in non-hyperaccumulator Pteris ensiformis at 10 µM AsV. Furthermore, compared to 500 µM phytate, the phytate concentration in the growth media was reduced by 69% to 155 µM, whereas the P and As contents in P. vittata fronds and roots were enhanced by 68-134% and 44-81% to 2423-2954 and 82-407 mg kg-1 under 500 µM phytate plus 50 µM AsV. The increased P/As uptake in P. vittata was probably attributed to 3.0-4.5-fold increase in expressions of P transporters PvPht1;3-1;4. Besides, under As exposure, plant P may be converted to phytate in P. vittata roots, thereby increasing phytate's contents by 84% to 840 mg kg-1. Overall, our results suggest that As-induced phytate/phytase exudation and phytate-P uptake stimulate its growth and As hyperaccumulation by P. vittata.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
9.
Environ Sci Technol ; 57(35): 12981-12990, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615500

RESUMO

Few studies have investigated the long-term effect of exposure to arsenic (As), lead (Pb), and cadmium (Cd) via drinking water at the provisional guideline values on gut microflora. In this study, male and female mice were exposed to water As, Pb, or Cd at 10, 10, or 5 µg L-1 for 6 months. At the end of the exposure, the net weight gain of male mice exposed to As and Pb (9.91 ± 1.35 and 11.2 ± 1.50 g) was significantly (p < 0.05) lower compared to unexposed control mice (14.1 ± 3.24 g), while this was not observed for female mice. Relative abundance of Akkermansia, a protective gut bacterium against intestinal inflammation, was reduced from 29.7% to 3.20%, 4.83%, and 17.0% after As, Pb, and Cd exposure in male mice, which likely caused chronic intestinal inflammation, as suggested by 2.81- to 9.60-fold higher mRNA levels of pro-inflammatory factors in ileal enterocytes of male mice. These results indicate that long-term exposure to drinking water As, Pb, and Cd at concentrations equivalent to the China provisional guideline values can cause loss of protective bacteria and lead to chronic intestinal inflammation, thereby affecting body weight gain in male mice.


Assuntos
Arsênio , Água Potável , Microbioma Gastrointestinal , Feminino , Masculino , Animais , Camundongos , Cádmio/toxicidade , Chumbo , Inflamação/induzido quimicamente , Aumento de Peso
10.
Environ Sci Technol ; 57(2): 1017-1027, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580282

RESUMO

Early-life arsenic (As) exposure is a particular health concern. However, it is unknown if As ingested early in life is more readily absorbed from the gastrointestinal (GI) tract, i.e., higher in oral bioavailability. Here, weanling (3-week) and adult (6-week-old) female mice were exposed to arsenate in the diet (10 µg g-1) over a 3-week period with As oral bioavailability estimated using As urinary excretion as the bioavailability endpoint. The As urinary excretion factor was 1.54-fold higher in weanling mice compared to adult mice (82.2 ± 7.29 versus 53.1 ± 3.73%), while weanling mice also showed 2.28-, 1.50-, 1.48-, and 1.89-fold higher As concentration in small intestine tissue, blood, liver, and kidneys, demonstrating significantly higher As oral bioavailability of early-life exposure. Compared to adult mice, weanling mice significantly differed in gut microbiota, but the difference did not lead to remarkable differences in As biotransformation in the GI tract or tissue and in overall gut metabolite composition. Although the expression of several metabolites (e.g., atrolactic acid, hydroxyphenyllactic acid, and xanthine) was up-regulated in weanling mice, they had limited ability to elevate As solubility in the intestinal tract. Compared to adult mice, the intestinal barrier function and intestinal expression of phosphate transporters responsible for arsenate absorption were similar in weanling mice. However, the small intestine of weanling mice was characterized by more defined intestinal villi with greater length and smaller width, providing a greater surface area for As to be absorbed across the GI barrier. The results highlight that early-life As exposure can be more readily absorbed, advancing the understanding of its health risk.


Assuntos
Arsênio , Microbioma Gastrointestinal , Animais , Camundongos , Feminino , Arseniatos , Mucosa Intestinal/metabolismo
11.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071813

RESUMO

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Assuntos
Gleiquênias , Proteínas de Membrana Transportadoras , Metais Terras Raras , Membrana Celular , Gleiquênias/metabolismo , Zinco/metabolismo
12.
Environ Sci Technol ; 56(13): 9196-9219, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35675210

RESUMO

Phytate (myo-inositol hexakisphosphate salts) can constitute a large fraction of the organic P in soils. As a more recalcitrant form of soil organic P, up to 51 million metric tons of phytate accumulate in soils annually, corresponding to ∼65% of the P fertilizer application. However, the availability of phytate is limited due to its strong binding to soils via its highly-phosphorylated inositol structure, with sorption capacity being ∼4 times that of orthophosphate in soils. Phosphorus (P) is one of the most limiting macronutrients for agricultural productivity. Given that phosphate rock is a finite resource, coupled with the increasing difficulty in its extraction and geopolitical fragility in supply, it is anticipated that both economic and environmental costs of P fertilizer will greatly increase. Therefore, optimizing the use of soil phytate-P can potentially enhance the economic and environmental sustainability of agriculture production. To increase phytate-P availability in the rhizosphere, plants and microbes have developed strategies to improve phytate solubility and mineralization by secreting mobilizing agents including organic acids and hydrolyzing enzymes including various phytases. Though we have some understanding of phytate availability and phytase activity in soils, the limiting steps for phytate-P acquisition by plants proposed two decades ago remain elusive. Besides, the relative contribution of plant- and microbe-derived phytases, including those from mycorrhizas, in improving phytate-P utilization is poorly understood. Hence, it is important to understand the processes that influence phytate-P acquisition by plants, thereby developing effective molecular biotechnologies to enhance the dynamics of phytate in soil. However, from a practical view, phytate-P acquisition by plants competes with soil P fixation, so the ability of plants to access stable phytate must be evaluated from both a plant and soil perspective. Here, we summarize information on phytate availability in soils and phytate-P acquisition by plants. In addition, agronomic approaches and biotechnological strategies to improve soil phytate-P utilization by plants are discussed, and questions that need further investigation are raised. The information helps to better improve phytate-P utilization by plants, thereby reducing P resource inputs and pollution risks to the wider environment.


Assuntos
6-Fitase , Ácido Fítico , 6-Fitase/química , 6-Fitase/metabolismo , Fertilizantes , Fosfatos , Fósforo , Ácido Fítico/metabolismo , Plantas/metabolismo , Solo/química
13.
Environ Sci Technol ; 56(19): 14178-14187, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36099335

RESUMO

Arsenic (As) is toxic and ubiquitous in the environment, posing a growing threat to human health. As-hyperaccumulator Pteris vittata has been used for phytoremediation of As-contaminated soil. Symbiosis with arbuscular mycorrhizal fungi (AMF) enhances As accumulation by P. vittata, which is different from As inhibition in typical plants. In this study, P. vittata seedlings inoculated with or without AMF were cultivated in As-contaminated soils for 2 months. AMF-root symbiosis enhanced plant growth, with 64.5% greater As contents in the fronds. After exposure to AsV for 2 h, the arsenate (AsV) and arsenite (AsIII) contents in AMF-roots increased by 1.8- and 3.6-fold, suggesting more efficient As uptake by P. vittata with AMF-roots. Plants take up and transport AsV via phosphate transporters (Phts). Here, for the first time, we identified a novel mycorrhiza-specific Pht transporter, PvPht1;6, from P. vittata. The transcripts of PvPht1;6 were strongly induced in AMF-roots, which were localized to the plasma membrane of arbuscule-containing cells. By complementing a yeast mutant lacking 5-Phts, we confirmed PvPht1;6's transport activity for both P and AsV. In contrast to typical AMF-inducible phosphate transporter LePT4 from tomato, PvPht1;6 showed greater AsV transport capacity. The results suggest that PvPht1;6 is probably critical for AsV transport at the periarbuscular membrane of P. vittata root cells, revealing the underlying mechanism of efficient As accumulation in P. vittata with AMF-roots.


Assuntos
Arsênio , Arsenitos , Micorrizas , Pteris , Poluentes do Solo , Arseniatos , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Humanos , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/metabolismo , Pteris/metabolismo , Solo , Poluentes do Solo/metabolismo , Simbiose
14.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121644

RESUMO

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Assuntos
Arsênio , Arsenitos , Pteris , Selênio , Poluentes do Solo , Antiporters/metabolismo , Antiporters/farmacologia , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arseniatos , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/genética , Pteris/metabolismo , Ácido Selênico , Selênio/metabolismo , Solo , Poluentes do Solo/metabolismo
15.
Environ Sci Technol ; 55(4): 2276-2284, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33497189

RESUMO

Arsenic (As) contamination in soils is of great concerns due to its toxicity to plants. As an analogue, phosphorus plays an important role in protecting plants from As toxicity. In this study, we identified a new phosphate transporter 2 (PHT2), PvPht2;1, from As-hyperaccumulator Pteris vittata and analyzed its functions in As and P transport in a yeast mutant, and model plant Arabidopsis thalian. PvPht2;1 contained 12 transmembrane domains, sharing high identity with PHT2 genes in diverse plants. Further, independent of external P or As levels, PvPht2;1 was mainly expressed in P. vittata fronds with the expression being 3-4 folds higher than that in the roots and rhizomes. Localized to the chloroplasts based on GFP-fused PvPht2;1 in model plant tobacco, PvPht2;1 functioned as a low-affinity P transporter. Under As exposure, PvPht2;1 yeast transformants showed comparable growth with the control while high-affinity P transporter PvPht1;3 transformants showed better growth, suggesting that PvPht2;1 transported P but slower than PvPht1;3 transporter. Expressing PvPht2;1 in A. thaliana increased its shoot P concentration without influencing its As accumulation. Further, the chloroplasts' P content in transgenic A. thaliana increased by 37-59% than wild-type (WT) plants. Under As exposure, the photosynthesis of PvPht2;1-expressing A. thaliana remained stable but that of WT plants decreased. The data indicate that, under As stress, expressing PvPht2;1 in A. thaliana enhanced its P transport to the chloroplasts and protected its photosynthesis. In short, highly expressed in the fronds and not impacted by As exposure, chloroplast-located PvPht2;1 may have protected As-hyperaccumulator P. vittata from As toxicity by efficiently transporting only P to its chloroplasts.


Assuntos
Arabidopsis , Arsênio , Pteris , Poluentes do Solo , Arabidopsis/genética , Arabidopsis/metabolismo , Arsênio/análise , Cloroplastos/química , Cloroplastos/metabolismo , Proteínas de Transporte de Fosfato/genética , Raízes de Plantas/metabolismo , Pteris/metabolismo , Poluentes do Solo/análise
16.
Environ Sci Technol ; 55(3): 1555-1565, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449628

RESUMO

Bioavailability and speciation of arsenic (As) are impacted by fertilization and bacteria in the rice rhizosphere. In this study, we investigated the effects of long-term manure application on As bioavailability, microbial community structure, and functional genes in a rice paddy field. The results showed that manure application did not affect total As in the soil but increased soluble As forms by 19%, increasing arsenite (As(III)) accumulation in rice grains and roots by 34 and 64% compared to a control. A real-time quantitative polymerase chain reaction (qPCR) and high-throughput sequencing analysis demonstrated that manure application increased the relative abundance of Rhizobium, Burkholderia, Sphingobium, and Sphingomonas containing arsenate reductase genes (arsC) in the rhizosphere soil, consistent with the 529% increase in arsC, which may have promoted arsenate (As(V)) reduction and increased As availability in pore water. In addition, manure application significantly altered the iron (Fe)-plaque microbial community structure and diversity. The microbes, particularly, Bradyrhizobium, Burkholderia, and Ralstonia, were mostly associated with As, Fe, and sulfur (S) cycles. This result was consistent with changes in the functional genes related to As, Fe, and S transformation. Although manure application promoted As(V) reduction (arsC) in Fe-plaque by 682%, it inhibited Fe and S reduction by decreasing FeIII reduction bacteria (Geobacteraceae) and the sulfate-reducing gene (dsrA) abundance. Further, manure application changed the composition of the microbial community that contained the arsC gene. In short, caution needs to be excised even in the soil with a low As concentration as manure application increased As(III) accumulation in rice grains.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Bactérias/genética , Compostos Férricos , Esterco , Rizosfera , Solo , Poluentes do Solo/análise
17.
Environ Res ; 198: 111198, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933486

RESUMO

Rice consumption is a major dietary source of human exposure to arsenic (As), with As bioavailability being an important factor influencing its health risk. In this study, the As bioaccessibility was measured in 11 rice grains (140-335 µg As kg-1), which were compared to As relative bioavailability previously measured based on a mouse bioassay (Li et al., 2017). Using modified physiologically-based extraction test for rice (MPBET), As bioaccessibility in raw rice samples (44-88% in the gastric phase and 47-102% in the intestinal phase) was similar to those in cooked rice (42-73% and 43-99%). Arsenic bioaccessibility in rice was generally higher in the intestinal phase than in the gastric phase, with Fe and Ca concentrations in rice being negatively correlated with As bioaccessibility in the gastric phase (R2 = 0.47-0.49). In addition, for cooked rice, strong positive correlation was observed between bioaccessible As and inorganic As (R2 = 0.63-0.72), suggesting inorganic As in rice was easier to dissolve than organic As in gastrointestinal digestive fluids. Due to limited variation in As bioaccessibility and As bioavailability among the 11 samples, a weak correlation was observed between them (R2 = 0.01-0.03); however, As bioaccessibility values measured by the gastric phase (GP) of the MPBET agreed with As bioavailability values based on a mouse bioassay, suggesting the potential of the MPBETGP to predict As bioavailability in rice. Future work is needed to ascertain the robustness of the MPBETGP in predicting As bioavailability in rice using additional samples.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Disponibilidade Biológica , Culinária , Minerais
18.
J Toxicol Environ Health A ; 84(14): 593-607, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33952142

RESUMO

Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.


Assuntos
Arsênio/farmacocinética , Chumbo/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Bioensaio , Disponibilidade Biológica , Feminino , Laboratórios , Camundongos , Camundongos Endogâmicos BALB C , Medição de Risco
19.
Ecotoxicol Environ Saf ; 209: 111840, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383343

RESUMO

Heavy-metal contamination is widespread in agricultural soils worldwide, especially paddy soils contaminated by Cd. Amendment-induced immobilization of heavy metals is an attractive and effective technique, provided that cost-effective materials are used. This field experiment compared three alkaline passivators (attapulgite, processed oyster shell powder, and mixed soil conditioner) at a rate of 2.25 t ha-1 for their effectiveness in decreasing Cd bioavailability in soils and accumulation in rice plants in a paddy field contaminated by Cd (0.38 Cd mg kg-1). The utilization of attapulgite and processed oyster shell powder decreased labile fractions but increased stable fractions of Cd in soils through ion exchange, precipitation and complexation. The addition of attapulgite decreased the concentration of bioavailable Cd in both bulk and rhizosphere soils, whereas the amendment of processed oyster shell powder decreased it only in bulk soil. The Cd accumulation in rice plants correlated significantly with acid-soluble and residual Cd fractions in the rhizosphere soil but not in the bulk soil. The addition of attapulgite and processed oyster shell powder decreased Cd accumulation in rice grains from 0.26 mg kg-1 to 0.14 and 0.19 mg kg-1, respectively, meeting the National Food Safety Standard (< 0.20 mg kg-1). However, the mixed soil conditioner did not decrease the Cd accumulation in rice shoots or grains. This study demonstrated that attapulgite and processed oyster shell powder were economic agents in reducing Cd accumulation in rice grains.


Assuntos
Cádmio/metabolismo , Recuperação e Remediação Ambiental/métodos , Compostos de Magnésio , Oryza/metabolismo , Compostos de Silício , Poluentes do Solo/metabolismo , Ácidos , Agricultura , Exoesqueleto/química , Animais , Disponibilidade Biológica , Cádmio/análise , Carbonato de Cálcio , Ostreidae , Pós , Rizosfera , Solo , Poluentes do Solo/análise
20.
Environ Sci Technol ; 54(8): 5003-5010, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32200627

RESUMO

Incidental soil ingestion is considered to be an important route of exposure to hydrophobic organic contaminants (HOCs), such as dichlorodiphenyl-trichloroethane (DDT). Contaminant ingestion often occurs during food consumption; however, knowledge on the influence of food on DDT bioavailability remains limited. In this study, the relative bioavailability (RBA) of soil DDTr (i.e., DDT and metabolites) was determined using an in vivo mouse model in the presence of eight kinds of food including rice, egg, pork, pear, soybean, bread, spinach, and milk powder. The values of DDTr-RBA ranged from 19.8 ± 10.9 to 114 ± 25.1%. DDTr-RBA was positively correlated with fat (r = 0.71) and negatively correlated with fiber (r = 0.63) content in food. A mechanistic study showed that fat enhanced micellarization and promoted the formation of chylomicron, which facilitated the dissolution and transport of DDTr in the intestinal tract. Bioaccessibility of DDTr was determined using a physiologically based in vitro method. The addition of lipase significantly improved the ability of the method to predict DDTr-RBA, indicating that the "fasted state" in vitro method required optimization for food scenarios. To the best of our knowledge, this is the first study to explore the mechanistic influence of food on DDTr-RBA and provide important knowledge on dietary approaches for reducing exposure to HOCs.


Assuntos
DDT/análise , Poluentes do Solo/análise , Animais , Disponibilidade Biológica , Alimentos , Camundongos , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa