Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Plant Physiol ; 189(4): 2193-2209, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640153

RESUMO

The shoot apical meristem (SAM), which is formed during embryogenesis, generates leaves, stems, and floral organs during the plant life cycle. SAM development is controlled by SHOOT MERISTEMLESS (STM), a conserved Class I KNOX transcription factor that interacts with another subclass homeodomain protein, BELL, to form a heterodimer, which regulates gene expression at the transcriptional level in Arabidopsis (Arabidopsis thaliana). Meanwhile, SKI-INTERACTING PROTEIN (SKIP), a conserved protein in eukaryotes, works as both a splicing factor and as a transcriptional regulator in plants to control gene expression at the transcriptional and posttranscriptional levels by interacting with distinct partners. Here, we show that, similar to plants with a loss of function of STM, a loss of function of SKIP or the specific knockout of SKIP in the SAM region resulted in failed SAM development and the inability of the mutants to complete their life cycle. In comparison, Arabidopsis mutants that expressed SKIP specifically in the SAM region formed a normal SAM and were able to generate a shoot system, including leaves and floral organs. Further analysis confirmed that SKIP interacts with STM in planta and that SKIP and STM regulate the expression of a similar set of genes by binding to their promoters. In addition, STM also interacts with EARLY FLOWERING 7 (ELF7), a component of Polymerase-Associated Factor 1 complex, and mutation in ELF7 exhibits similar SAM defects to that of STM and SKIP. This work identifies a component of the STM transcriptional complex and reveals the mechanism underlying SKIP-mediated SAM formation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902157

RESUMO

Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.


Assuntos
Processamento Alternativo , Poliadenilação , RNA/metabolismo , Transcriptoma , RNA Mensageiro/genética , Plantas/metabolismo , Regulação da Expressão Gênica , Regiões 3' não Traduzidas
3.
Genes Dev ; 27(14): 1581-95, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824326

RESUMO

Post-translational histone modifications play important roles in regulating chromatin structure and function. Histone H2B ubiquitination and deubiquitination have been implicated in transcriptional regulation, but the function of H2B deubiquitination is not well defined, particularly in higher eukaryotes. Here we report the purification of ubiquitin-specific peptidase 49 (USP49) as a histone H2B-specific deubiquitinase and demonstrate that H2B deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons. USP49 forms a complex with RuvB-like1 (RVB1) and SUG1 and specifically deubiquitinates histone H2B in vitro and in vivo. USP49 knockdown results in small changes in gene expression but affects the abundance of >9000 isoforms. Exons down-regulated in USP49 knockdown cells show both elevated levels of alternative splicing and a general decrease in splicing efficiency. Importantly, USP49 is relatively enriched at this set of exons. USP49 knockdown increased H2B ubiquitination (uH2B) levels at these exons as well as upstream 3' and downstream 5' intronic splicing elements. Change in H2B ubiquitination level, as modulated by USP49, regulates U1A and U2B association with chromatin and binding to nascent pre-mRNA. Although H3 levels are relatively stable after USP49 depletion, H2B levels at these exons are dramatically increased, suggesting that uH2B may enhance nucleosome stability. Therefore, this study identifies USP49 as a histone H2B-specific deubiquitinase and uncovers a critical role for H2B deubiquitination in cotranscriptional pre-mRNA processing events.


Assuntos
Histonas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/isolamento & purificação , Ubiquitinação
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804866

RESUMO

Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid-liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Poliadenilação , RNA de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Transcrição Gênica
5.
J Integr Plant Biol ; 63(12): 2150-2163, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647689

RESUMO

Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.


Assuntos
Oryza , Tolerância ao Sal , Cloretos , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética
6.
Plant Cell Physiol ; 61(9): 1565-1575, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544241

RESUMO

N-terminal acetylation (Nt-acetylation) is one of the most common protein modifications in eukaryotes. The function of Naa50, the catalytic subunit of the evolutionarily conserved N-terminal acetyltransferase (Nat) E complex, has not been reported in Arabidopsis. In this study, we found that a loss of Naa50 resulted in a pleiotropic phenotype that included dwarfism and sterility, premature leaf senescence and a shortened primary root. Further analysis revealed that root cell patterning and various root cell properties were severely impaired in naa50 mutant plants. Moreover, defects in auxin distribution were observed due to the mislocalization of PIN auxin transporters. In contrast to its homologs in yeast and animals, Naa50 showed no co-immunoprecipitation with any subunit of the Nat A complex. Moreover, plants lacking Naa50 displayed hypersensitivity to abscisic acid and osmotic stress. Therefore, our results suggest that protein N-terminal acetylation catalyzed by Naa50 plays an essential role in Arabidopsis growth and osmotic stress responses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Acetiltransferase N-Terminal E/fisiologia , Pressão Osmótica , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fertilidade , Ácidos Indolacéticos/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
7.
Proc Natl Acad Sci U S A ; 114(47): 12614-12619, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109252

RESUMO

Male sterility is an essential trait in hybrid seed production for monoclinous crops, including rice and wheat. However, compared with the high percentage of hybrid rice planted in the world, little commercial hybrid wheat is planted globally as a result of the lack of a suitable system for male sterility. Therefore, understanding the molecular nature of male fertility in wheat is critical for commercially viable hybrid wheat. Here, we report the cloning and characterization of Male Sterility 1 (Ms1) in bread wheat by using a combination of advanced genomic approaches. MS1 is a newly evolved gene in the Poaceae that is specifically expressed in microsporocytes, and is essential for microgametogenesis. Orthologs of Ms1 are expressed in diploid and allotetraploid ancestral species. Orthologs of Ms1 are epigenetically silenced in the A and D subgenomes of allohexaploid wheat; only Ms1 from the B subgenome is expressed. The encoded protein, Ms1, is localized to plastid and mitochondrial membranes, where it exhibits phospholipid-binding activity. These findings provide a foundation for the development of commercially viable hybrid wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Quimera , Gametogênese Vegetal , Inativação Gênica , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Poliploidia , Ligação Proteica , Fatores de Transcrição/metabolismo , Triticum/metabolismo
8.
New Phytol ; 224(1): 321-335, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209881

RESUMO

Ski-interacting protein (SKIP) is a bifunctional regulator of gene expression that works as a splicing factor as part of the spliceosome and as a transcriptional activator by interacting with EARLY FLOWERING 7 (ELF7). MOS4-Associated Complex 3A (MAC3A) and MAC3B interact physically and genetically with SKIP, mediate the alternative splicing of c. 50% of the expressed genes in the Arabidopsis genome, and are required for the splicing of a similar set of genes to that of SKIP. SKIP interacts physically and genetically with splicing factors and Polymerase-Associated Factor 1 complex (Paf1c) components. However, these splicing factors do not interact either physically or genetically with Paf1c components. The SKIP-spliceosome complex mediates circadian clock function and abiotic stress responses by controlling the alternative splicing of pre-mRNAs encoded by clock- and stress tolerance-related genes. The SKIP-Paf1c complex regulates the floral transition by activating FLOWERING LOCUS C (FLC) transcription. Our data reveal that SKIP regulates floral transition and environmental fitness via its incorporation into two distinct complexes that regulate gene expression transcriptionally and post-transcriptionally, respectively. It will be interesting to discover in future studies whether SKIP is required for integration of environmental fitness and growth by control of the incorporation of SKIP into spliceosome or Paf1c in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Meio Ambiente , Flores/fisiologia , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/genética , Processamento Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Modelos Biológicos , Ligação Proteica , Spliceossomos/metabolismo , Estresse Fisiológico/genética
9.
Proc Natl Acad Sci U S A ; 113(27): 7661-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325772

RESUMO

The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Criptocromos/fisiologia , Ferredoxina-NADP Redutase/metabolismo , Flores/fisiologia , Nitrogênio/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Relógios Circadianos , Mutação , NADP/metabolismo , Técnicas de Hibridização Subtrativa
10.
Nucleic Acids Res ; 43(3): 1469-84, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25578968

RESUMO

The histone demethylase JMJ14 catalyzes histone demethylation at lysine 4 of histone 3 and is involved in transcriptional repression and flowering time control in Arabidopsis. Here, we report that JMJ14 is physically associated with two previously uncharacterized NAC transcription factors, NAC050 and NAC052. The NAC050/052-RNAi plants and the CRISPR-CAS9-mediated nac050/052 double mutant plants show an early flowering phenotype, which is similar to the phenotype of jmj14, suggesting a functional association between JMJ14 and NAC050/052. RNA-seq data indicated that hundreds of common target genes are co-regulated by JMJ14 and NAC50/052. Our ChIP analysis demonstrated that JMJ14 and NAC050 directly bind to co-upregulated genes shared in jmj14 and NAC050/052-RNAi, thereby facilitating H3K4 demethylation and transcriptional repression. The NAC050/052 recognition DNA cis-element was identified by an electrophoretic mobility shift assay at the promoters of its target genes. Together, our study identifies two novel NAC transcription repressors and demonstrates that they are involved in transcriptional repression and flowering time control by associating with the histone demethylase JMJ14.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica/fisiologia , Histona Desmetilases/metabolismo , Fatores de Transcrição/fisiologia , Cromatografia de Afinidade , Cromatografia em Gel , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Espectrometria de Massas , Técnicas do Sistema de Duplo-Híbrido
11.
Int J Mol Sci ; 18(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230724

RESUMO

Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism's transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas/genética , Proteínas de Transporte/metabolismo , Relógios Circadianos/genética , Meio Ambiente , Flores/genética , Interação Gene-Ambiente , Aptidão Genética , Desenvolvimento Vegetal/genética , Plantas/metabolismo , Ligação Proteica , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Estresse Fisiológico/genética , Temperatura , Fatores de Transcrição/metabolismo
12.
J Exp Bot ; 67(15): 4779-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27385766

RESUMO

Early embryonic development generates precursors of all major cell types in Arabidopsis. Among these precursors, the hypophysis divides asymmetrically to form the progenitors of the quiescent center and columella stem cells. A great deal has been learnt about the mechanisms that control the asymmetric division of the hypophysis and embryogenesis at the transcriptional level; however, no evidence of regulation at the co- or post-translational level has been reported. Here, we show that mutation of the catalytic subunit (Naa10) or auxiliary subunit (Naa15) of NatA, an N-terminal acetyltransferase that catalyzes protein N-terminal acetylation, produces an embryo-lethal phenotype. In addition, Naa10 and Naa15 were found to interact physically in planta Further analysis revealed that the observed embryonic patterning defects started at the early globular stage and that the asymmetric division of the hypophysis was irregular; thus, no quiescent center progenitor cells were generated in naa10 and naa15 embryos. We further observed that the polar distributions of auxin and its efflux carrier PIN1 were disturbed in naa10 embryos. Our results suggest that NatA is required for asymmetric division of the hypophysis and early embryonic patterning in Arabidopsis, and provides a link between protein N-terminal acetylation and embryogenesis in plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Acetiltransferases N-Terminal/metabolismo , Sementes/crescimento & desenvolvimento , Acetilação , Arabidopsis/metabolismo , Imunoprecipitação , Acetiltransferases N-Terminal/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Sementes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Cell ; 25(2): 625-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23424245

RESUMO

Light regulates ascorbic acid (AsA) synthesis, which increases in the light, presumably reflecting a need for antioxidants to detoxify reactive molecules produced during photosynthesis. Here, we examine this regulation in Arabidopsis thaliana and find that alterations in the protein levels of the AsA biosynthetic enzyme GDP-Man pyrophosphorylase (VTC1) are associated with changes in AsA contents in light and darkness. To find regulatory factors involved in AsA synthesis, we identified VTC1-interacting proteins by yeast two-hybrid screening of a cDNA library from etiolated seedlings. This screen identified the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B), which interacted with the N terminus of VTC1 in yeast and plants. Gel filtration profiling showed that VTC1-CSN5B also associated with the COP9 signalosome complex, and this interaction promotes ubiquitination-dependent VTC1 degradation through the 26S proteasome pathway. Consistent with this, csn5b mutants showed very high AsA levels in both light and darkness. Also, a double mutant of csn5b with the partial loss-of-function mutant vtc1-1 contained AsA levels between those of vtc1-1 and csn5b, showing that CSN5B modulates AsA synthesis by affecting VTC1. In addition, the csn5b mutant showed higher tolerance to salt, indicating that CSN5B regulation of AsA synthesis affects the response to salt stress. Together, our data reveal a regulatory role of CSN5B in light-dark regulation of AsA synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Nucleotidiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complexo do Signalossomo COP9 , Escuridão , Luz , Complexos Multiproteicos/metabolismo , Mutação , Estresse Oxidativo/fisiologia , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Tolerância ao Sal , Plântula/genética , Plântula/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
PLoS Genet ; 9(12): e1004025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348273

RESUMO

In the dark, etiolated seedlings display a long hypocotyl, the growth of which is rapidly inhibited when the seedlings are exposed to light. In contrast, the phytohormone ethylene prevents hypocotyl elongation in the dark but enhances its growth in the light. However, the mechanism by which light and ethylene signalling oppositely affect this process at the protein level is unclear. Here, we report that ethylene enhances the movement of constitutive photomorphogenesis 1 (COP1) to the nucleus where it mediates the degradation of long hypocotyl 5 (HY5), contributing to hypocotyl growth in the light. Our results indicate that HY5 is required for ethylene-promoted hypocotyl growth in the light, but not in the dark. Using genetic and biochemical analyses, we found that HY5 functions downstream of ethylene insensitive 3 (EIN3) for ethylene-promoted hypocotyl growth. Furthermore, the upstream regulation of HY5 stability by ethylene is COP1-dependent, and COP1 is genetically located downstream of EIN3, indicating that the COP1-HY5 complex integrates light and ethylene signalling downstream of EIN3. Importantly, the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) enriched the nuclear localisation of COP1; however, this effect was dependent on EIN3 only in the presence of light, strongly suggesting that ethylene promotes the effects of light on the movement of COP1 from the cytoplasm to the nucleus. Thus, our investigation demonstrates that the COP1-HY5 complex is a novel integrator that plays an essential role in ethylene-promoted hypocotyl growth in the light.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Hipocótilo/crescimento & desenvolvimento , Proteínas Nucleares/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a DNA , Escuridão , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipocótilo/efeitos dos fármacos , Luz , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteólise/efeitos dos fármacos , Plântula , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases
15.
Plant Cell ; 24(8): 3278-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22942380

RESUMO

Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5' and 3' splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos , Spliceossomos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Mutação , Fotoperíodo , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Repressoras , Spliceossomos/genética , Temperatura , Fatores de Transcrição/genética
16.
PLoS Genet ; 8(4): e1002664, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536163

RESUMO

Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell-dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores , Histonas , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Domínio MADS/genética , Arabidopsis/crescimento & desenvolvimento , Cromatina/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Mutação , Fenótipo
17.
Nucleic Acids Res ; 40(18): 8905-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772985

RESUMO

Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji/metabolismo , RNA Polimerase Dependente de RNA/genética , Ribonuclease III/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/enzimologia , Proteínas de Ligação a DNA/genética , Epigênese Genética , Inativação Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Mutação , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo
18.
J Biol Chem ; 287(17): 14109-21, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22334670

RESUMO

Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura/métodos , Modelos Genéticos , Dados de Sequência Molecular , Raízes de Plantas , Plasmídeos/metabolismo , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
19.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672181

RESUMO

In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Apoptose , Pólen/genética , Reprodução
20.
Bio Protoc ; 13(9): e4672, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188106

RESUMO

Visualization of cell structure with fluorescent dye for characterizing cell size, shape, and arrangement is a common method to study tissue morphology and morphogenesis. In order to observe shoot apical meristem (SAM) in Arabidopsis thaliana by laser scanning confocal microscopy, we modified the pseudo-Schiff propidium iodide staining method by adding a series solution treatment to stain the deep cells. The advantage of this method is mainly reflected by the direct observation of the clearly bounded cell arrangement and the typical three-layer cells in SAM without the traditional tissue slicing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa