Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136823

RESUMO

BACKGROUND: Prone positioning has a beneficial role in coronavirus disease 2019 (COVID-19) patients receiving ventilation but lacks evidence in awake non-ventilated patients, with most studies being retrospective, lacking control populations and information on subjective tolerability. METHODS: We conducted a prospective, single-centre study of prone positioning in awake non-ventilated patients with COVID-19 and non-COVID-19 pneumonia. The primary outcome was change in peripheral oxygenation in prone versus supine position. Secondary outcomes assessed effects on end-tidal CO2, respiratory rate, heart rate and subjective symptoms. We also recruited healthy volunteers to undergo proning during hypoxic challenge. RESULTS: 238 hospitalised patients with pneumonia were screened; 55 were eligible with 25 COVID-19 patients and three non-COVID-19 patients agreeing to undergo proning - the latter insufficient for further analysis. 10 healthy control volunteers underwent hypoxic challenge. Patients with COVID-19 had a median age of 64 years (interquartile range 53-75). Proning led to an increase in oxygen saturation measured by pulse oximetry (SpO2) compared to supine position (difference +1.62%; p=0.003) and occurred within 10 min of proning. There were no effects on end-tidal CO2, respiratory rate or heart rate. There was an increase in subjective discomfort (p=0.003), with no difference in breathlessness. Among healthy controls undergoing hypoxic challenge, proning did not lead to a change in SpO2 or subjective symptom scores. CONCLUSION: Identification of suitable patients with COVID-19 requiring oxygen supplementation from general ward environments for awake proning is challenging. Prone positioning leads to a small increase in SpO2 within 10 min of proning though is associated with increased discomfort.

2.
J Pain Res ; 12: 2709-2722, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564962

RESUMO

Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa