Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339354

RESUMO

Stroke is a severe neurological disorder resulting from the rupture or blockage of blood vessels, leading to significant mortality and disability worldwide. Among the different types of stroke, ischemic stroke (IS) is the most prevalent, accounting for 70-80% of cases. Cell death following IS occurs through various mechanisms, including apoptosis, necrosis, and ferroptosis. Ferroptosis, a recently identified form of regulated cell death characterized by iron overload and lipid peroxidation, was first described by Dixon in 2012. Currently, the only approved pharmacological treatment for IS is recombinant tissue plasminogen activator (rt-PA), which is limited by a narrow therapeutic window and often results in suboptimal outcomes. Recent research has identified several traditional Chinese medicines (TCMs) that can inhibit ferroptosis, thereby mitigating the damage caused by IS. This review provides an overview of stroke, the role of ferroptosis in IS, and the potential of certain TCMs to inhibit ferroptosis and contribute to stroke treatment.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , AVC Isquêmico , Medicina Tradicional Chinesa , Ferroptose/efeitos dos fármacos , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos
2.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338471

RESUMO

Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Antineoplásicos/farmacologia , Divisão Celular
3.
Phytomedicine ; 120: 155071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716034

RESUMO

BACKGROUND: Hemorrhagic transformation (HT) seriously affects the clinical application of recombinant tissue plasminogen activator (rt-PA). The main strategy for combating HT is to keep the blood-brain barrier (BBB) stable. Escin is the active ingredient of Aesculus hippocastanum and a natural mixture of triterpene saponins, and may play a part in mitigation of HT. PURPOSE: This study sought to investigate the effect of Escin in improving rt-PA-induced HT, explore possible mechanisms, and provide new ideas for the treatment of clinical HT. STUDY DESIGN AND METHODS: In in vivo experiments, transient middle cerebral artery occlusion (tMCAO) was undertaken in 6-week-old and 12-month-old mice, and rt-PA was administered to induce HT injury. The inhibitory effect of Escin on HT and its protective effect on neurobehavior, the BBB, and cerebrovascular endothelial cells was determined. In in vitro experiments, bEnd.3 cells were injured by oxygen-glucose deprivation/reperfusion (OGD/R) and rt-PA. The protective effect of Escin was measured by the CCK8 assay, release of lactate dehydrogenase (LDH), and expression of tight junction (TJ) proteins. In mechanistic studies, the effect of Escin on the adenosine monophosphate-activated kinase / caveolin-1 / matrix metalloprotease-9 (AMPK/Cav-1/MMP-9) pathway was investigated by employing AMPK inhibitor and Cav-1 siRNA. RESULTS: In mice suffering from ischemia, rt-PA caused HT as well as damage to the BBB and cerebrovascular endothelial cells. Escin reduced the infarct volume, cerebral hemorrhage, improved neurobehavioral deficits, and maintained BBB integrity in rt-PA-treated tMCAO mice while attenuating bEnd.3 cells damage caused by rt-PA and OGD/R injury. Under physiological and pathological conditions, Escin increased the expression of p-AMPK and Cav-1, leading to decreased expression of MMP-9, which further attenuated damage to cerebrovascular endothelial cells, and these effects were verified with AMPK inhibitor and Cav-1 siRNA. CONCLUSION: We revealed important details of how Escin protects cerebrovascular endothelial cells from HT, these effects were associated with the AMPK/Cav-1/MMP-9 pathway. This study provides experimental foundation for the development of new drugs to mitigate rt-PA-induced HT and the discovery of new clinical application for Escin.


Assuntos
AVC Isquêmico , Animais , Camundongos , Escina , Proteínas Quinases Ativadas por AMP , Células Endoteliais , Metaloproteinase 9 da Matriz , Ativador de Plasminogênio Tecidual , Barreira Hematoencefálica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa