Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(26): 263603, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449768

RESUMO

Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here, we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include tilted dispersion, chiral-like robust propagation in samples with certain shapes, and 100% scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa