Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , Antibióticos beta Lactam , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
2.
Chemistry ; : e202402102, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087665

RESUMO

In photocatalysis, the resulted heat by the relaxation of most of incident light no longer acts as the industrially favorite driving force back to the target photo-reaction due to more or less the negative relation between photocatalytic efficiency and temperature. Here, we reported a visible light-sensitized protocol that completely reversed the negatively temperature-dependent efficiency in photo-driven CO2 methanation with saturated water vapor. Uniform Pt/N-TiO2/PDI self-assembly material decisively injects the excited electron of PDI sensitizer into N-TiO2 forming Ti-H hydride which is crucially temperature-dependent nucleophilic species to dominate CO2 methanation, rather than conventionally separated and trapped electrons on the conductor band. Meanwhile, the ternary composite lifts itself temperature from room temperature to 305.2 °C within 400s only by the failure excitation upon simulated sunlight of 2.5 W/cm2, and smoothly achieves CO2 methanation with a record number of 4.98 mmol g-1 h-1 rate, compared to less than 0.02 mmol g-1 h-1 at classic Pt/N-TiO2/UV photocatalysis without PDI sensitization. This approach can reuse ~53.9% of the relaxed heat energy from the incident light thereby allow high-intensity incident light as strong as possible within a flowing photo-reactor, opening the most likely gateways to industrialization.

3.
J Org Chem ; 87(21): 13627-13642, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36174109

RESUMO

One-pot oxo-amination of unactivated cyclopropanes with safe, green dioxygen as an oxidant and low-cost amines as nitrogen sources has generated interest since this can directly result in uniform ß-located difunctional units. Formation of the three-electron cation radical followed by the nucleophilic attack of amines to open the strained ring of cyclopropanes catalyzed by classic noble-complex photocatalysts was a promising strategy. However, this ring-opening pathway could not maintain the entire second-order nucleophilic substitution (SN2) conversion, which generally led to unsatisfactory enantioselectivity (enantiomeric excess (ee) value ∼60%). Here, we demonstrate that for such a one-step oxo-amination of cyclopropanes with benign dioxygen and pyrazoles, a highly uniform inversion of configuration could be first accomplished through a TiO2 photocatalyst. This strategy features low-cost, semiheterogeneous photocatalysis and environmentally friendly reaction conditions, without using any sacrificial reagent or additive. Importantly, our protocol not only provides a relatively broad substrate scope tolerant to a certain range of substituted cyclopropanes and pyrazoles, resulting in various ß-amino ketone products (∼50 examples) with excellent conversions and yields, but also retains excellent enantioselectivity (ee value ∼99%). A concerted SN2 ring opening raised from an oxetane cation intermediate rather than a conventional three-electron cation radical prior to attaching to dioxygen was proposed.


Assuntos
Aminas , Ciclopropanos , Aminação , Pirazóis , Oxigênio
4.
Ecotoxicol Environ Saf ; 242: 113951, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999766

RESUMO

Conventional photocatalysts generate numerous active species-primarily hydroxyl radicals (•OH)-under solar light excitation to exert photocatalytic activity for especially antibacterial effects. However, the light dependence limits their competitiveness against other antimicrobial materials since they do not work at night. Herein, a P-g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+ (P-g-C3N4/SMSO) composite day-night photocatalyst is synthesized, using a model methyl orange (MO) substrate, and the impacts of trace P doping and the SMSO composite on the activity of the photocatalyst in MO degradation is investigated; Its antibacterial effect against Escherichia coli and Staphylococcus aureus on ceramic surfaces is further examined. The morphology, structure, and composition of the photocatalyst are characterized by SEM, TEM, XRD, FT-IR, and UV-vis DRS. Finally, the photocatalytic mechanism is elucidated through active species capture experiments and ESR testing. P doping and the SMSO heterojunction structure reduce the width of the forbidden band of g-C3N4 and broaden its visible-light-response range. Moreover, SMSO acts as a light source to realize long-lasting photocatalytic performance of the composite, even in the dark. The photocatalytic process produces •O2-, 1O2, and h+ active species, with •O2- and 1O2 playing the dominant role-instead of •OH as previously thought.


Assuntos
Nitrilas , Fósforo , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Cerâmica/farmacologia , Escherichia coli , Nitrilas/química , Fósforo/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Crit Care ; 24(1): 28, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000806

RESUMO

BACKGROUND: Previous studies suggest that prone positioning (PP) can increase PaO2/FiO2 and reduce mortality in moderate to severe acute respiratory distress syndrome (ARDS). The aim of our study was to determine whether the early use of PP combined with non-invasive ventilation (NIV) or high-flow nasal cannula (HFNC) can avoid the need for intubation in moderate to severe ARDS patients. METHODS: This prospective observational cohort study was performed in two teaching hospitals. Non-intubated moderate to severe ARDS patients were included and were placed in PP with NIV or with HFNC. The efficacy in improving oxygenation with four support methods-HFNC, HFNC+PP, NIV, NIV+PP-were evaluated by blood gas analysis. The primary outcome was the rate of intubation. RESULTS: Between January 2018 and April 2019, 20 ARDS patients were enrolled. The main causes of ARDS were pneumonia due to influenza (9 cases, 45%) and other viruses (2 cases, 10%). Ten cases were moderate ARDS and 10 cases were severe. Eleven patients avoided intubation (success group), and 9 patients were intubated (failure group). All 7 patients with a PaO2/FiO2 < 100 mmHg on NIV required intubation. PaO2/FiO2 in HFNC+PP were significantly higher in the success group than in the failure group (125 ± 41 mmHg vs 119 ± 19 mmHg, P = 0.043). PaO2/FiO2 demonstrated an upward trend in patients with all four support strategies: HFNC < HFNC+PP ≤ NIV < NIV+PP. The average duration for PP was 2 h twice daily. CONCLUSIONS: Early application of PP with HFNC, especially in patients with moderate ARDS and baseline SpO2 > 95%, may help avoid intubation. The PP was well tolerated, and the efficacy on PaO2/FiO2 of the four support strategies was HFNC < HFNC+PP ≤ NIV < NIV+PP. Severe ARDS patients were not appropriate candidates for HFNC/NIV+PP. TRIAL REGISTRATION: ChiCTR, ChiCTR1900023564. Registered 1 June 2019 (retrospectively registered).


Assuntos
Cânula/normas , Posicionamento do Paciente/normas , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Cânula/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Hipóxia/fisiopatologia , Hipóxia/prevenção & controle , Masculino , Pessoa de Meia-Idade , Posicionamento do Paciente/métodos , Posicionamento do Paciente/estatística & dados numéricos , Segurança do Paciente/normas , Segurança do Paciente/estatística & dados numéricos , Decúbito Ventral/fisiologia , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/prevenção & controle
6.
Environ Sci Technol ; 52(11): 6426-6437, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29697970

RESUMO

Six naturally occurring minerals were employed to catalyze the hydrolysis of microcystin-LR (MC-LR) in water. After preliminary screening experiments, siderite stood out among these minerals due to its higher activity and selectivity. In comparison with kaolinite, which is known to act as a Lewis acid catalyst, siderite was found to act primarily as a Brönsted acid catalyst in the hydrolysis of MC-LR. More interestingly, we found that the presence of humic acid significantly inhibited catalytic efficiency of kaolinite, while the efficiency of siderite remained high (∼98%). Reaction intermediates detected by LC-ESI/MS were used to indicate cleavage points in the macrocyclic ring of MC-LR, and XPS was used to characterize siderite interaction with MC-LR. Detailed analysis of the in situ ATR-FTIR absorption spectra of MC-LR indicated hydrogen bonding at the siderite-water-MC-LR interface. A metastable ring, involving hydrogen bonding, between surface bicarbonate of siderite and an amide of MC-LR was proposed to explain the higher activity and selectivity toward MC-LR. Furthermore, siderite was found to reduce the toxicity of MC-LR to mice by hydrolyzing MC-LR peptide bonds. The study demonstrates the potential of siderite, an earth-abundant and biocompatible mineral, for removing MC-LR from water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Carbonatos , Catálise , Compostos Férricos , Hidrólise , Toxinas Marinhas , Camundongos , Microcistinas , Oxirredução
7.
J Am Chem Soc ; 139(5): 2083-2089, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28088853

RESUMO

TiO2-based dye-sensitization cycle is one of the basic strategies for the development of solar energy applications. Although the power conversion efficiency (PCE) of dye-sensitized devices has been improved through constant attempts, the intrinsically fatal factor that leads to the complete failure of the PCE of TiO2-mediated dye-sensitized devices has not yet been determined. Here, by using isotopically labeled MAS-1H NMR, ATR-FTIR spectroscopy (separate H/D and 48Ti/49Ti experiments), and ESR, we revealed that the accumulative formation of Ti-H species on the TiO2 surface is the intrinsic cause of the PCE failure of TiO2-based dye-sensitization devices. Such a Ti-H species is generated from the reduction of hydrogen ions (mostly released from dye carboxyl groups or organic electrolyte) accompanied by electron injection on the surface of TiO2, which deteriorates the PCE mainly by reducing the electrical conductivity of the TiO2 (by a maximum of ∼80%) and the hydrophilic nature of the TiO2 surface (contact angle increased).

8.
J Am Chem Soc ; 138(8): 2705-11, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859244

RESUMO

Hematite is a promising material for solar water splitting; however, high efficiency remains elusive because of the kinetic limitations of interfacial charge transfer. Here, we demonstrate the pivotal role of proton transfer in water oxidation on hematite photoanodes using photoelectrochemical (PEC) characterization, the H/D kinetic isotope effect (KIE), and electrochemical impedance spectroscopy (EIS). We observed a concerted proton-electron transfer (CPET) characteristic for the rate-determining interfacial hole transfer, where electron transfer (ET) from molecular water to a surface-trapped hole was accompanied by proton transfer (PT) to a solvent water molecule, demonstrating a substantial KIE (∼3.5). The temperature dependency of KIE revealed a highly flexible proton transfer channel along the hydrogen bond at the hematite/electrolyte interface. A mechanistic transition in the rate-determining step from CPET to ET occurred after OH(-) became the dominant hole acceptor. We further modified the proton-electron transfer sequence with appropriate proton acceptors (buffer bases) and achieved a greater than 4-fold increase in the PEC water oxidation efficiency on a hematite photoanode.

9.
Molecules ; 21(7)2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27376262

RESUMO

As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed.


Assuntos
Eletrodos , Compostos Férricos/química , Oxirredução , Processos Fotoquímicos , Luz Solar , Água/química , Eletroquímica , Fotoquímica
10.
Acc Chem Res ; 47(2): 355-63, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24164388

RESUMO

TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future.

11.
Environ Sci Technol ; 49(5): 3024-31, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25648875

RESUMO

Aldehyde pollution has been receiving increasing environmental concern recently. In this study, the photooxidation of aldehydes to carboxylates on the TiO2 surface was studied by an oxygen-isotope-labeling method. The solvent H2O was found to contribute much to the oxygen source of the formed carboxylate, which cannot be explained if the conventional O2-involved free radical chain reaction is the only mechanism for the photocatalytic oxidation of aldehydes. We also observed that, unlike in the TiO2 photocatalytic system, the aldehyde oxidation in homogeneous solutions initiated by single electron oxidant (•)OH and SO4(•-) radicals inserted a small O atom of H2O into the product acids. The detailed experiments, combined with DFT calculation, revealed the existence of a new pathway for the oxidation of aldehyde on TiO2, in which, analogous to oxidation of aldehyde by dehydrogenase, the aldehyde undergoes a hydration first and subsequently is oxidized through a two-electron transfer process. The present study highlights the multielectron characteristic of TiO2 photocatalytic oxidation and can have implications for the oxidation of aldehyde in the environment.


Assuntos
Aldeídos/análise , Aldeídos/química , Poluentes Ambientais/química , Titânio/química , Água/química , Marcação por Isótopo , Oxirredução , Processos Fotoquímicos
12.
Angew Chem Int Ed Engl ; 54(20): 5905-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25809908

RESUMO

The hole-driving oxidation of titanium-coordinated water molecules on the surface of TiO2 is both thermodynamically and kinetically unfavorable. By avoiding the direct coordinative adsorption of water molecules to the surface Ti sites, the water can be activated to realize its oxidation. When TiO2 surface is covered by the H-bonding acceptor F, the first-layer water adsorption mode is switched from Ti coordination to a dual H-bonding adsorption on adjacent surface F sites. Detailed in situ IR spectroscopy and isotope-labeling studies reveal that the adsorbed water molecules by dual H-bonding can be oxidized to O2 even in the absence of any electron scavengers. Combined with theoretical calculations, it is proposed that the formation of the dual H-bonding structure can not only enable the hole transfer to the water molecules thermodynamically, but also facilitate kinetically the cleavage of O-H bonds by proton-coupled electron transfer process during water oxidation.

13.
Angew Chem Int Ed Engl ; 54(7): 2052-6, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25529248

RESUMO

An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows.

14.
J Am Chem Soc ; 136(24): 8714-21, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24850419

RESUMO

The molecules O2 and H2O dominate the cleavage of aromatic sp(2) C-C bonds, a crucial step in the degradation of aromatic pollutants in aqueous TiO2 photocatalysis, but their precise roles in this process have remained elusive. This can be attributed to the complex oxidative species involved and to a lack of available models for reactions with a high yield of direct products. Here, we used oxygen-18 isotope labeled O2 and H2O to observe the aromatic ring-opening reaction of the model compound 3,5-di-tert-butylcatechol (DTBC), which was mediated by TiO2 photocatalysis in an aqueous acetonitrile solution. By analyzing the primary intermediate products (∼75% yield), especially the seven-membered ring anhydrides that were formed, we obtained direct evidence for the oxygen atom of dioxygen insertion into a C-C bond of the aromatic ring. This indicates that molecular oxygen is the ultimate ring-opening agent in TiO2 photocatalysis and that it undergoes single O atom incorporation rather than the previously proposed molecular oxygen 1,2-addition processes. The ratio of intradiol to extradiol products depends on the particle size of TiO2 catalysts used, which suggests that the O2 activation is correlated with the available coordination sites on the TiO2 surface in the photocatalytic cleavage of the aromatic ring.

15.
Chemistry ; 20(7): 1861-70, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24402745

RESUMO

The degradation behaviours of five straight-chain dicarboxylic acids (from ethanedioic acid to hexanedioic acid) were compared in aqueous TiO2-based photocatalysis. When all other conditions were identical, the degradation rates were found to fluctuate regularly with the parity of the number of carbon atoms. Dicarboxylic acids with an even number of carbon atoms (e-DAs) always degraded more slowly than those acids with an odd number of carbon atoms (o-DAs). This unusual fluctuation in the reactivity for the degradation of dicarboxylic acids by TiO2-based photocatalysis is very closely related to the different pre-coordination modes of the acids with the photocatalyst. Attenuated total reflection FTIR (ATR-FTIR) of e-DAs labelled with (13)C showed that both carboxyl groups of the acid coordinate to TiO2 through bidentate chelating forms. In contrast, only one carboxyl group of the o-DAs coordinated to TiO2 in a bidentate chelating manner, whereas the other formed a monodentate binding linkage. The bidentate chelating form with bilateral symmetric coordination did not favour degradation. Isotope-labelling experiments were performed with (18)O2 to observe the different ways in which incorporated oxygen entered the initial decarboxylated products of e- and o-DAs. For the degradation of butanedioic acid, (45.9±0.5) % of the oxygen in the formed propanedioic acid came from H2O, whereas for pentanedioic acid, (97.4±0.2) % of the oxygen in the formed butanedioic acid came from H2O. Our results demonstrate that in TiO2-based photocatalysis, the reactivity of active species, such as ·OH/h(vb)(+), is far from non-selective and that the attacks of these active species on organic substrates are significantly affected by the coordination patterns of the substrates on the TiO2 surface.

16.
Chemistry ; 20(21): 6277-82, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24764202

RESUMO

Epoxidation of olefins with H2O2 is one of the most important reactions in organic synthesis. We found that anatase TiO2 can be a good catalyst for the epoxidation of cyclooctene with H2O2 at room temperature. However, the catalyst deactivated quickly in the presence of excess amount of H2O2 because of the formation of inactive side-on Ti-η(2)-peroxide species on the surface of TiO2, the presence of which was confirmed by isotope-labelled resonance UV Raman spectroscopy and kinetics studies. Interestingly, the epoxidation reaction could be dramatically accelerated under irradiation of UV light with λ≥350 nm. This phenomenon is attributed to the photo-assisted removal of the inactive peroxide species, through which the active sites on the surface of anatase TiO2 are regenerated and the catalytic epoxidation of cyclooctene with H2O2 is resumed. This finding provides an alternative for sustained epoxidation reactions on TiO2 at room temperature. Moreover, it also has significant implications on the deactivation pathway and possible solutions in Ti-based heterogeneous catalysis or photocatalysis.

17.
Chemistry ; 20(35): 11163-70, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25066816

RESUMO

Titanium dioxide with surface-loaded palladium (Pd-TiO2) was able to easily remove all ten bromine atoms from decabromodiphenyl ether (BDE209) within 1 h under the irradiation of sunlight or an artificial light source. By contrast, fewer than three bromine atoms were eliminated on the pristine TiO2 even with prolonged irradiation (5 h). During the photocatalytic debromination, moreover, the formed BDE intermediates exhibited a significant difference between the Pd-TiO2 and pristine TiO2 systems, and much less position selectivity for the debromination on Pd-TiO2 was observed than that on the pristine TiO2 surface. For another polybrominated diphenyl ether (BDE15), pristine TiO2 was incapable of its photocatalytic reduction, whereas the loading of Pd enabled its debromination to diphenyl ether within 20 min. In addition, an evident induction period appeared in the photocatalytic debromination of BDE15 on Pd-TiO2. The experiments imply that the Pd-cocatalyzed effect changes significantly the photocatalytic reductive debromination pathways.

18.
Phys Chem Chem Phys ; 16(14): 6550-4, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24584573

RESUMO

Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h(-1) for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively.

19.
Molecules ; 19(10): 16291-311, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25310153

RESUMO

During the last several decades TiO2 photocatalytic oxidation using the molecular oxygen in air has emerged as a promising method for the degradation of recalcitrant organic pollutants and selective transformations of valuable organic chemicals. Despite extensive studies, the mechanisms of these photocatalytic reactions are still poorly understood due to their complexity. In this review, we will highlight how the oxygen-18 isotope labeling technique can be a powerful tool to elucidate complicated photocatalytic mechanisms taking place on the TiO2 surface. To this end, the application of the oxygen-18 isotopic-labeling method to three representative photocatalytic reactions is discussed: (1) the photocatalytic hydroxylation of aromatics; (2) oxidative cleavage of aryl rings on the TiO2 surface; and (3) photocatalytic decarboxylation of saturated carboxylic acids. The results show that the oxygen atoms of molecular oxygen can incorporate into the corresponding products in aqueous solution in all three of these reactions, but the detailed incorporation pathways are completely different in each case. For the hydroxylation process, the O atom in O2 is shown to be incorporated through activation of O2 by conduction band electrons. In the cleavage of aryl rings, O atoms are inserted into the aryl ring through the site-dependent coordination of reactants on the TiO2 surface. A new pathway for the decarboxylation of saturated carboxylic acids with pyruvic acid as an intermediate is identified, and the O2 is incorporated into the products through the further oxidation of pyruvic acid by active species from the activation of O2 by conduction band electrons.


Assuntos
Isótopos de Oxigênio/química , Fotoquímica , Titânio/química , Catálise , Descarboxilação , Hidrólise , Oxirredução , Propriedades de Superfície
20.
Nat Commun ; 15(1): 5047, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871750

RESUMO

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa