RESUMO
Retinol is one of the main active forms of vitamin A, crucial for the organism's growth, development, and maintenance of eye and skin functions. It is widely used in cosmetics, pharmaceuticals, and feed additives. Although animals lack a complete pathway for synthesizing vitamin A internally, they can obtain vitamin A directly through diet or convert ß-carotene acquired from the diet. To boost the research on the biosynthesis of retinol, three different sources of alcohol dehydrogenase were firstly screened based on the ß-carotene synthesis platform CAR*1. It was determined that ybbO from Escherichia coli exhibited the highest catalytic activity,with a conversion rate of 95. 6%. To further enhance the reaction rate and yield of retinol, protein fusion technology was employed to merge two adjacent enzymes, blh and ybbO, within the retinol synthesis module. The evaluation was conducted using the high-yield engineered strain CAR*3 of ß-carotene. The optimal combination, blh-GGGS-ybbO, was obtained, with a 44. 9% increase in yield after fusion, reaching(111. 1± 3. 5) mg·L~(-1). Furthermore, through the introduction of human-derived retinol-binding protein(RBP4) and transthyretin(TTR), the process of hepatic cell secreting retinol was simulated in Saccharomyces cerevisiae, leading to an increased retinol yield of(158. 0±13. 1)mg·L~(-1). Finally, optimization strategies including overexpressing INO2 to enhance the reaction area for ß-carotene synthesis, enhancing hemoglobin VHb expression to improve oxygen supply, and strengthening PDR3m expression to facilitate retinol transport were implemented. A two-stage fermentation process resulted in the successful elevation of retinol production to(2 320. 0±26. 0)mg·L~(-1) in the fermentation tank of 5 L, which provided a significant foundation for the industrial development of retinol.
Assuntos
Fermentação , Saccharomyces cerevisiae , Vitamina A , Vitamina A/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Humanos , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , beta Caroteno/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismoRESUMO
PURPOSE: This study aimed to explore the prognostic significance of clinicopathological characteristics in early-onset versus late-onset colorectal liver metastases (CRLM). METHODS: The data of CRLM patients who underwent hepatectomy from September 2010 to September 2020 were retrospectively analyzed. According to the age of primary cancer diagnosis, patients were divided into early-onset CRLM (EOCRLM) and late-onset CRLM (LOCRLM) groups. Clinicopathological parameters were compared between the two groups. Cox regression model and Kaplan-Meier method were used to analyze the effect of clinicopathological parameters on overall survival (OS) and recurrence-free survival (RFS). RESULTS: In total, 431 CRLM patients were identified, 130 with EOCRLM and 301 with LOCRLM. Compared with LOCRLM patients, EOCRLM patients had lower American Society of Anesthesia (ASA) grade and longer operation time (204 vs. 179 min). More aggressive features were presented in EOCRLM patients including synchronous liver metastases (76.9% vs. 61.1%) and bilobar involvement (43.8% vs. 33.2%). No significant difference in OS or RFS was found between the two groups. Multivariate analysis of EOCRLM group showed that preoperative CA19-9 level and RAS/BRAF status were predictive of OS, while bilobar involvement and preoperative CEA level were associated with RFS. In LOCRLM group, the number of CRLM, preoperative CA19-9 level, and BRAF status were associated with OS, while the number of CRLM was associated with RFS. CONCLUSIONS: The preoperative CA19-9 level, RAS/BRAF status, bilobar involvement, and preoperative CEA level were predictive of EOCRLM patient prognosis, while the number of CRLM, preoperative CA19-9 level, and BRAF status were predictive of LOCRLM patient prognosis.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Prognóstico , Antígeno CA-19-9 , Proteínas Proto-Oncogênicas B-raf , Estudos Retrospectivos , Neoplasias Colorretais/cirurgia , Neoplasias Hepáticas/secundário , HepatectomiaRESUMO
With fossil energy resources increasingly drying up and gradually causing serious environmental impacts, pursuing a tandem and green synthetic route for a complex and high-value-added compound by using low-cost raw materials has attracted considerable attention. In this regard, the selective and efficient conversion of light olefins with CO2 into high-value-added organic cyclic carbonates (OCCs) is of great significance owing to their high atom economy and absence of the isolation of intermediates. To fulfill this expectation, a multifunctional catalytic system with controllable spatial arrangement of varied catalytic sites and stable texture, in particular, within a single catalyst, is generally needed. Here, by using a stepwise electrostatic interaction strategy, imidazolium-based ILs and Au nanoparticles (NPs) were stepwise immobilized into a sulfonic group grafted MOF to construct a multifunctional single catalyst with a highly ordered arrangement of catalytic sites. The Au NPs and imidazolium cation are separately responsible for the selective epoxidation and cycloaddition reaction. The mesoporous cage within the MOF enriches the substrate molecules and provides a confined catalytic room for the tandem catalysis. More importantly, the highly ordered arrangement of the varied active sites and strong electrostatic attraction interaction result in the intimate contact and effective mass transfer between the catalytic sites, which allow for the highly efficient (>74% yield) and stable (repeatedly usage for at least 8 times) catalytic transformation. The stepwise electrostatic interaction strategy herein provides an absolutely new approach in fabricating the controllable multifunctional catalysts, especially for tandem catalysis.
RESUMO
The aim of this study was to gain insight into the knowledge of, attitude toward, and practical experience with listeriosis among medical staff. In two hospitals in Fangshan, Beijing, 410 medical staff members were randomly selected using a random sampling method. Each selected staff member was invited to participate in a standardized questionnaire interview. In total, 397 valid questionnaires were collected. With regard to the staff members' general knowledge of listeriosis, they answered 65.96% of the items correctly. The knowledge scores among obstetricians and gynecologists were higher than those of other clinical doctors (p < 0.05); however, obstetricians and gynecologists were less knowledgeable about which drugs are effective against listeriosis than the other doctors (p = 0.007). The percentage of participants with a positive attitude about preventing listeriosis was 96.47%, the percentage with practice formation was 52.39%. The medical staff's mean score for knowledge of listeriosis was 4.61 ± 1.83. The mean score for attitude toward listeriosis was 9.71 ± 1.31. There was a significant association between attitude and knowledge of listeriosis (r = 0.221, p < 0.001). Medical staff obtained a mean score of 2.10 ± 1.07 for the practice formation. There was a significant association between practice formation and knowledge of listeriosis (r = 0.502, p < 0.001). The mean knowledge-attitude-practice (KAP) score for listeriosis among medical staff was 16.41 ± 3.19. The KAP scores were significantly correlated with age (r = 0.129, p = 0.011), occupation (r = -0.103, p = 0.041), department (r = -0.168, p = 0.001), and professional title (r = 0.166, p = 0.001). To improve medical outcomes and foodborne disease surveillance, medical staff should receive more training on listeriosis and the content of the training should be adjusted.
Assuntos
Doenças Transmitidas por Alimentos/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Listeriose/prevenção & controle , Corpo Clínico , Adulto , Idoso , Pequim , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto JovemRESUMO
Menaquinone-7 (MK-7) plays an important role in blood clotting, cardiovascular disease and anti-osteoporosis, and has been wildly used in the food additives and pharmaceutical industries. The aim of this study was to investigate the mechanism of menaquinone-7 biosynthesis in response to different oxygen supplies in Bacillus natto. The differences of fermentation performance, intracellular metabolites, oxidative stress reaction and enzyme activities of Bacillus natto R127 were analyzed under different KLa. Glycerol consumption rate and MK-7 yield at 24.76 min- 1 was 2.1 and 7.02 times of that at 18.23 min- 1. Oxidative stress analysis showed the cell generated more active oxygen and possessed higher antioxidant capacity at high oxygen supply condition. Meanwhile, high pyruvate kinase and high cytochrome c oxidase activities were also observed at 24.76 min- 1. Furthermore, comparative metabolomics analyses concluded series of biomarkers for high MK-7 biosynthesis and cell rapid growth. Besides, several metabolic responses including low glyceraldehyde-3-phosphate accumulation, low flux from pyruvate to lactic acid, high active TCA pathway, were also found to be associated with high MK-7 accumulation at high oxygen supply conditions. These findings provided the information for better understanding of oxygen effect on MK-7 biosynthesis and lay a foundation for further improvement of MK-7 production as well.
Assuntos
Bacillus subtilis/metabolismo , Glicerol/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Oxigênio/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismoRESUMO
Laboratory-based pathogen isolation, identification, and toxicity determination were performed on samples from a suspected case of infant botulism. Mice injected with cultures generated from the enema sample and ingested Powered infant formula (PIF) presented typical signs of botulism. Antitoxins to polyvalent botulinum neurotoxins (BoNTs) and monovalent BoNT type B antitoxin had protective effects. Clostridium botulinum isolated from the enema and residual PIF samples were positive for type B toxin. Pulsed-field gel electrophoresis (PFGE) revealed that the two strains of C. botulinum isolated from the two samples produced indistinguishable pulsotypes. These findings confirmed this case of type B infant botulism associated with the ingestion of PIF contaminated by type B C. botulinum spores.
Assuntos
Toxinas Botulínicas/toxicidade , Botulismo/diagnóstico , Botulismo/epidemiologia , Clostridium botulinum/isolamento & purificação , Animais , Pequim/epidemiologia , Toxinas Botulínicas/isolamento & purificação , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Camundongos , Testes de ToxicidadeRESUMO
INTRODUCTION: After therapy, approximately 15% of individuals with Hodgkin's lymphoma (HL) develop relapsed or drug-resistant Hodgkin's lymphoma (r/rHL). r/rHL has a high fatality rate and poor therapeutic prognosis. CD30 CAR-T-cell therapy has emerged as a new way to treat r/rHL in recent years. However, CD30CAR-T cells are still being explored in clinical trials. To help more patients, this review focuses on current CD30CAR-T-cell advancements as well as clinical breakthroughs in treatment of r/rHL. AREAS COVERED: This research examines the mechanism of action of CD30 CAR-T cells, their function in the real-world therapy of r/rHL, and the influence of different treatment regimens on treatment results. EXPERT OPINION: There has been much research into CD30 CAR-T cells as a result of their successful use in treatment of r/rHL. This research has helped us to understand CD30 CAR-T-cell safety as well as the management options available before and after its administration to increase patient survival and reduce side effects.
Assuntos
Doença de Hodgkin , Humanos , Doença de Hodgkin/tratamento farmacológico , Resultado do Tratamento , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodosRESUMO
Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.
Assuntos
Salinidade , Purificação da Água , Pressão Osmótica , Aclimatação , Anaerobiose , Purificação da Água/métodos , Reatores BiológicosRESUMO
Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.
RESUMO
BACKGROUND: Tertiary lymphoid structures (TLSs) have been proposed to assess the prognosis of patients with cancer. Here, we investigated the prognostic value and relevant mechanisms of TLSs in colorectal cancer liver metastases (CRCLM). METHODS: 603 patients with CRCLM treated by surgical resection from three cancer centers were included. The TLSs were categorized according to their anatomic subregions and quantified, and a TLS scoring system was established for intratumor region (T score) and peritumor region (P score). Differences in relapse-free survival (RFS) and overall survival (OS) between groups were determined. Multiplex immunohistochemical staining (mIHC) was used to determine the cellular composition of TLSs in 40 CRCLM patients. RESULTS: T score positively correlated with superior prognosis, while P score negatively associated with poor survival (all p<0.05). Meanwhile, T score was positively associated with specific mutation subtype of KRAS. Furthermore, TLSs enrichment gene expression was significantly associated with survival and transcriptomic subtypes of CRCLM. Subsequently, mIHC showed that the densities of Treg cells, M2 macrophages and Tfh cells were significantly higher in intratumor TLSs than in peritumor TLSs (p=0.029, p=0.047 and p=0.041, respectively), and the frequencies of Treg cells and M2 macrophages were positively correlated with P score, while the frequencies of Tfh cells were positively associated with T scores in intratumor TLSs (all p<0.05). Next, based on the distribution and abundance of TLSs, an Immune Score combining T score and P score was established which categorized CRCLM patients into four immune classes with different prognosis (all p<0.05). Among them, patients with higher immune class have more favorable prognoses. The C-index of Immune Class for RFS and OS was higher than Clinical Risk Score statistically. These results were also confirmed by the other two validation cohorts. CONCLUSIONS: The distribution and abundance of TLSs is significantly associated with RFS and OS of CRCLM patients, and a novel immune class was proposed for predicting the prognosis of CRCLM patients.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Humanos , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias Hepáticas/patologia , Neoplasias Colorretais/patologiaRESUMO
The difference and interplay of microbial communities, metabolic functions and influence factors between sewage sludge and bulking agent were evaluated in 60 days composting. Results showed that fungal communities were mainly affected by pH (42.4%) and ORP (35.9%) of sludge but by VS (41.1%) and temperature (34.7%) of sawdust in a composting system. Bacterial communities were primarily affected by VS (43.5%) and C/N (34.8%) of sludge but by ORP (44.5%) and temperature (31.0%) of sawdust. Tepidimicrobium dominated in the sludge at thermophilic period, while Alcaligenes prevailed in the sawdust. Bacterial carbon metabolism was significantly higher in the sludge than that in the sawdust except carbohydrate metabolism. Saprophytic fungi were the main trophic mode both in the sludge and sawdust. Water transfer facilitated Aspergillus and Trichosporon moving from sludge to sawdust to decompose lignocellulose. Ammonia transfer promoted the migration of Alcaligenes and Pseudomonas from sludge to sawdust and facilitated ammonia assimilating.
Assuntos
Compostagem , Microbiota , Micobioma , Amônia , Esgotos , SoloRESUMO
To investigate the effect of salinity (1% sodium chloride) on anaerobic microbial community structure in high strength telephthalic wastewater treatment system, the performances of anaerobic-aerobic process and the shifts of microbial community in anaerobic tank were studied and determined. Results showed that the chemical oxygen demand (COD) removal in the whole process remained above 90%. And the effluent concentrations of targeted pollutants were lower than 10â¯mg/L, other than para-toluic acid (PT, 38.09â¯mg/L). However, methane production significantly decreased compared to no salinity situation. This might be due to the inhibition of salinity on methanogens, which hindered the conversion of acetate to methane. Furthermore, the dominant genus in bacterial level changed from Tepidisphaera to Syntrophus, which facilitated the syntrophic association with hydrogenotrophic methanogens. The prevailed archaea remained acetoclastic Methanothrix above 90%. Therefore, the salinity on anaerobic microbial community structure mainly reflects in the methanogen process, remarkably decreasing methane production.
Assuntos
Anaerobiose , Microbiota , Ácidos Ftálicos/química , Salinidade , Purificação da Água/métodosRESUMO
Hierarchical porosity and functionalization are recognized as two crucial parameters in mediating the catalytic performance of heterogeneous catalysts, however, they are rarely achieved simultaneously in the development of metal-organic frameworks (MOFs). In this work, a simple and efficient method has been developed to synchronously construct hierarchical porosity and functionalization within a sulfonic acid group functionalized microporous MOF via a palladium-reduction induced strategy, for the first time. The generation mechanism of the mesopore has been explained using two-dimensional 1H DQ-SQ MAS NMR. The content of the mesopore and the active sites within mesoPd@NUS-6 could be finely tuned by simply controlling Pd loading. Particularly, the combination of hierarchical porosity and functionalization, as well as the ultra-stable structure endow the composites with great potential in bulk, for adsorption and heterogeneous catalysis.
RESUMO
Spatial catalytic acid-base-Pd triple-sites of a hierarchical core-shell structure have been successfully constructed for a three-step reaction, and exhibited excellent catalytic activity and stability. A catalytic mechanism has been systematically studied via single one- and two-step reactions, and possible molecular reactions have been proposed.
RESUMO
The development of a suitable catalytic system in the single catalyst has always been the pursuit for synthetic chemists in order to perform the traditional stepwise reactions in one-pot mode. In this work, an ultra-stable bifunctional catalyst of Pd@MIL-101-SO3H was successfully constructed and applied in the one-pot oxidation-acetalization reaction whose products have been widely utilized as fuel additives, perfumes, pharmaceuticals and polymer chemistry. The excellent catalytic performance (>99% yields), on the one hand, can be ascribed to the synergistic effects of Pd NPs with both Lewis and Bronsted acid encapsulated within a sulfonated MIL-101(Cr). On the other hand, the exceptionally high capacity of water adsorption in MIL-101(Cr) could promote the equilibrium movement via interrupting the reversible process. More importantly, Pd@MIL-101-SO3H is recyclable and can be reused for at least 8 times without sacrificing its catalytic activities. As far as we know, this is the first time that a water adsorption enhanced equilibrium movement of reversible reaction by porous catalyst to achieve high yields has been realized in Pd@MIL-101-SO3H, which may provide an absolutely new and efficient strategy especially for designing reaction-oriented catalysts.
RESUMO
Hierarchical porosity and functionalization help to fully make use of metal-organic frameworks (MOFs) for their diverse applications. Herein, a simple strategy is reported to construct hierarchically porous MOFs through a competitive coordination method using tetrafluoroborate (M(BF4 )x , where M is metal site) as both functional sites and etching agents. The resulting MOFs have in situ formed defect-mesopores and functional sites without sacrificing their structure stability. The formation mechanism of the defect-mesopores is elucidated by a combination of experimental and first-principles calculation method, indicating the general feasibility of this new approach. Compared with the original microporous counterparts, the new hierarchical MOFs exhibit superior adsorption for the bulky dye molecules and catalytic performance for the CO2 conversion attributed to their specific hierarchical pore structures.
RESUMO
PURPOSE: This study was designed to identify disrupted pathways in an individual with preeclampsia (PE) using accumulated normal sample data based on individualized pathway aberrance score (iPAS) method. MATERIALS AND METHODS: Pathway data were obtained from the Reactome database. Next, the average Z algorithm was utilized to compute the iPAS. The disrupted pathways in a PE sample were identified by means of t test according to the pathway statistics values of normal and PE samples. In addition, we screened the differential expressed genes (DEGs) using SAMR package and constructed the differential co-expression network comprising DEGs. Subsequently, topological analysis for the co-expression network was conducted to identify hub genes. RESULTS: Under the threshold of false discovery rate <0.05, 69 disrupted pathways were selected. Among them, formation of tubulin-folding intermediates by containing t-complex polypeptide 1 (CCT)/TCP1 ring complex (TriC) was the most remarkable pathway. Degree analysis for co-expression network of DEGs suggested that there were several hub-disrupted pathway-related genes, for instance, TCP1 and TUBA1A. More importantly, these two hub genes were enriched in the most significant pathway of formation of tubulin-folding intermediates by CCT/TriC. CONCLUSION: The iPAS method is suitable for identifying disrupted pathways in PE. Pathway of formation of tubulin folding intermediates by CCT/TriC might play important roles in PE.
Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Transdução de Sinais , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Especificidade de Órgãos/genética , Medicina de Precisão , GravidezRESUMO
OBJECTIVE: To evaluate the possible effects of folate on cervical carcinogenesis and the interaction of folate and human papillomaviruses 16 (HPV16). METHODS: A hospital-based case-control study was conducted. 111 hospitalized cases who were pathologically diagnosed of having cervical cancer and 111 controls identified with hysteromyoma that frequency-matched to cases on age, birth place and residential area. A 60-item food-frequency questionnaire (FFQ) were administered to estimate the consumption of dietary folate. HPV16 DNA in exfoliated cervical cell and serum folate were detected by special PCR and radioimmunoassay respectively. RESULTS: HPV16 infection rate in cases (61.26%) was significantly higher than that in controls (28.83%), with adjusted OR of 4.95(95% CI:2.49-9.83).The levels of dietary folate in cases (5.00 microg/kcal +/- 0.41 microg/kcal) were significantly lower than that in controls (5.14 microg/kcal +/- 0.35 microg/kcal), but the adjusted OR showing no statistical significance. However, serum folate in cases (1.79 ng/ml +/- 1.42 ng/ml) was significantly lower than that in controls(2.59 ng/ml +/- 2.81 ng/ml),and there were significantly increasing trend in the risk of cervical cancer with reducing level of serum folate (chi-squared trend test of P = 0.000). Meanwhile, low-level of serum folate and HPV16-infection showed significant interaction in the development of cervical cancer, with likelihood ratio test of G = 5.56, P = 0.02. CONCLUSION: Results indicated that low levels of folate might increase the risk of cervical cancer, and potential synergistic action might exist between low level of serum folate and HPV16 in the development of cervical cancer.