Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Pharmacol Exp Ther ; 382(3): 287-298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688476

RESUMO

Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce the adrenocorticotropin hormone and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease. A pegylated UCN1 peptide (PEG-hUCN1) was generated to extend half-life and was tested in multiple experimental autoimmune disease models and in healthy mice to determine effects on corticosterone induction, autoimmune disease, and glucocorticoid induced adverse effects. Cardiovascular effects were also assessed by telemetry. PEG-hUCN1 demonstrated a dose dependent 4-6-fold elevation of serum corticosterone and significantly improved autoimmune disease comparable to prednisolone in several experimental models. In healthy mice, PEG-hUCN1 showed less adverse effects compared with corticosterone treatment. PEG-hUCN1 peptide induced an initial 30% reduction in blood pressure that was followed by a gradual and sustained 30% increase in blood pressure at the highest dose. Additionally, an adeno-associated viral 8 (AAV8) UCN1 was used to assess adverse effects of chronic elevation of UCN1 in wild type and CRHR2 knockout mice. Chronic UCN1 expression by an AAV8 approach in wild type and CRHR2 knockout mice demonstrated an important role of CRHR2 in countering the adverse metabolic effects of elevated corticosterone from UCN1. Our findings demonstrate that PEG-hUCN1 shows profound effects in treating autoimmune disease with an improved safety profile relative to corticosterone and that CRHR2 activity is important in metabolic regulation. SIGNIFICANCE STATEMENT: This study reports the generation and characterization of a pegylated UCN1 peptide and the role of CRHR2 in UCN1-induced metabolic effects. The potency/selectivity, pharmacokinetic properties, pharmacodynamic effects, and efficacy in four autoimmune models and safety profiles are presented. This pegylated UCN1 shows potential for treating autoimmune diseases with reduced adverse effects compared to corticosterone treatment. Continuous exposure to UCN1 through an AAV8 approach demonstrates some glucocorticoid mediated adverse metabolic effects that are exacerbated in the absence of the CRHR2 receptor.


Assuntos
Doenças Autoimunes , Urocortinas , Animais , Doenças Autoimunes/tratamento farmacológico , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Glucocorticoides , Camundongos , Camundongos Knockout , Modelos Teóricos , Polietilenoglicóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/metabolismo , Urocortinas/farmacologia
2.
Muscle Nerve ; 54(6): 1120-1132, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074419

RESUMO

INTRODUCTION: There is evidence that supports a role for Vitamin D (Vit. D) in muscle. The exact mechanism by which Vit. D deficiency impairs muscle strength and function is not clear. METHODS: Three-week-old mice were fed diets with varied combinations of Vit. D and Ca2+ deficiency. Behavioral testing, genomic and protein analysis, and muscle histology were performed with a focus on neuromuscular junction (NMJ) -related genes. RESULTS: Vit. D and Ca2+ deficient mice performed more poorly on given behavioral tasks than animals with Vit. D deficiency alone. Genomic and protein analysis of the soleus and tibialis anterior muscles revealed changes in several Vit. D metabolic, NMJ-related, and protein chaperoning and refolding genes. CONCLUSIONS: These data suggest that detrimental effects of a Vit. D deficient or a Vit. D and Ca2+ deficient diet may be a result of differential alterations in the structure and function of the NMJ and a lack of a sustained stress response in muscles. Muscle Nerve 54: 1120-1132, 2016.


Assuntos
Deficiência de Ácido Ascórbico/patologia , Dieta/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Membro Posterior/patologia , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/fisiopatologia , Fatores Etários , Animais , Deficiência de Ácido Ascórbico/sangue , Deficiência de Ácido Ascórbico/etiologia , Deficiência de Ácido Ascórbico/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular , Hormônio Paratireóideo/sangue , Fósforo/sangue , Equilíbrio Postural , Desempenho Psicomotor , Vitamina D/metabolismo
3.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427592

RESUMO

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Camundongos , Animais , Antígenos CD19 , Doenças Autoimunes/tratamento farmacológico
4.
PLoS One ; 15(4): e0230818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315311

RESUMO

The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions.


Assuntos
Força Muscular/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Miostatina/genética , Actinas/genética , Animais , Extremidades/fisiologia , Fêmur/fisiologia , Expressão Gênica/genética , Guanidinoacetato N-Metiltransferase/genética , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos BALB C , Força Muscular/fisiologia , Atrofia Muscular/fisiopatologia , Voo Espacial/métodos , Ausência de Peso
5.
Br J Pharmacol ; 175(2): 262-271, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898923

RESUMO

BACKGROUND AND PURPOSE: Human parathyroid hormone (PTH) is critical for maintaining physiological calcium homeostasis and plays an important role in the formation and maintenance of the bone. Full-length PTH and a truncated peptide form are approved for treatment of hypoparathyroidism and osteoporosis respectively. Our initial goal was to develop an improved PTH therapy for osteoporosis, but clinical development was halted. The novel compound was then repurposed as an improved therapy for hypoparathyroidism. EXPERIMENTAL APPROACH: A longer-acting form of PTH was synthesised by altering the peptide to increase cell surface residence time of the bound ligand to its receptor. In vitro screening identified a compound, which was tested in an animal model of osteoporosis before entering human trials. This compound was subsequently tested in two independent animal models of hypoparathyroidism. KEY RESULTS: The peptide identified, LY627-2K, exhibited delayed internalization kinetics. In an ovariectomy-induced bone loss rat model, LY627-2K demonstrated improved vertebral bone mineral density and biomechanical properties at skeletal sites and a modest increase in serum calcium. In a Phase I clinical study, dose-dependent increases in serum calcium were reproduced. These observations prompted us to explore a second indication, hypoparathyroidism. In animal models of this disease, LY627-2K restored serum calcium, comparing favourably to treatment with wild-type PTH. CONCLUSIONS AND IMPLICATIONS: We summarize the repositioning of a therapeutic candidate with substantial preclinical and clinical data. Our results support its repurposing and continued development, from a common indication (osteoporosis) to a rare disease (hypoparathyroidism) by exploiting a shared molecular target. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Assuntos
Reposicionamento de Medicamentos/métodos , Hipoparatireoidismo/tratamento farmacológico , Hormônio Paratireóideo/análogos & derivados , Animais , Densidade Óssea/efeitos dos fármacos , Cálcio/sangue , Feminino , Humanos , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Ratos
6.
J Bone Miner Res ; 22(6): 841-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17352652

RESUMO

UNLABELLED: Bone microarchitecture measured at the iliac crest at 6 mo was confirmed to be a reasonable surrogate for, and a predictor of, architecture and strength of the femoral neck and lumbar vertebra after 18 mo of teriparatide treatment. However, the data taken together showed the importance of cortical bone volume for vertebra to assess pharmacological effects on bone quality. INTRODUCTION: Improvements in bone architecture with teriparatide treatment are suggested to contribute to fracture risk reduction in osteoporotic patients. Teriparatide significantly improves microarchitecture in the iliac crest of humans by stimulating bone modeling and remodeling processes that differ dramatically from those induced by antiresorptives. The relationship between improvements of bone microarchitecture and improvements of bone strength with teriparatide treatment has not yet been fully studied. MATERIALS AND METHODS: Ovariectomized monkeys were administered vehicle (n = 20); teriparatide 1.0 microg/kg/d (n = 19); or teriparatide 5.0 microg/kg/d (n = 21) for 18 mo. Iliac crest biopsies were obtained at 6 and 15 mo after initiation of treatment. Animals were killed after 18 mo of treatment, and adjacent vertebrae or contralateral proximal femora were processed for biomechanical or histomorphometric analyses. Pearson correlation analyses were performed to assess the relationship between biomechanical and static histomorphometric parameters of lumbar vertebra, femoral neck, and iliac crest biopsies. RESULTS: Static histomorphometric parameters of the 6- and 15-mo biopsies were significantly correlated with the vertebral and femoral neck parameters obtained at 18 mo of teriparatide treatment. Iliac crest biopsy parameters at 6 and 15 mo also correlated with vertebral and femoral neck strength at 18 mo. Static histomorphometry of the lumbar vertebra and femoral neck at 18 mo also significantly correlated with strength at these sites. However, cortical bone volume of the lumbar vertebrae had the strongest correlation with vertebral and femoral neck strength (r = 0.74 and 0.71, respectively). CONCLUSIONS: Teriparatide dose dependently improved cortical and trabecular microarchitecture of vertebra and femoral neck, as well as trabecular microarchitecture of the iliac crest. Bone microarchitecture at all sites was significantly correlated with lumbar vertebra and femoral neck strength. Cortical bone volume of vertebra had the strongest correlation with vertebral and femoral neck strength. Therefore, structural improvement seemed to be part of the mechanism for improved strength observed with teriparatide treatment. Trabecular bone architecture of the iliac crest at 6 mo also correlated with vertebral and femoral neck strength, as did femoral neck (cortical and trabecular) histomorphometry and trabecular histomorphometry of vertebra after 18 mo of treatment. Because clinical assessment of cortical bone volume is not readily possible for vertebra noninvasively, these findings confirm the importance of iliac crest biopsies to monitor skeletal health and show that biopsies are a reasonable surrogate to assess spine and femoral neck structure and function.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Ovariectomia , Teriparatida/farmacologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Força Compressiva/fisiologia , Feminino , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/efeitos dos fármacos , Colo do Fêmur/fisiologia , Ílio/anatomia & histologia , Ílio/efeitos dos fármacos , Ílio/fisiologia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiologia , Macaca fascicularis
7.
J Bone Miner Res ; 22(12): 1924-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17708715

RESUMO

UNLABELLED: Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis. INTRODUCTION: Wnt signaling regulates many aspects of development including postnatal accrual of bone. Potential mechanisms for how Wnt signaling increases bone mass include regulation of osteoblast and/or osteoclast number and activity. To help differentiate between these possibilities, we studied mice in which Wnt10b is expressed specifically in osteoblast lineage cells or in mice devoid of Wnt10b. MATERIALS AND METHODS: Transgenic mice, in which mouse Wnt10b is expressed from the human osteocalcin promoter (Oc-Wnt10b), were generated in C57BL/6 mice. Transgene expression was evaluated by RNase protection assay. Quantitative assessment of bone variables was done by radiography, muCT, and static and dynamic histomorphometry. Mechanisms of bone homeostasis were evaluated with assays for BrdU, TUNEL, and TRACP5b activity, as well as serum levels of C-terminal telopeptide of type I collagen (CTX). The endogenous role of Wnt10b in bone was assessed by dynamic histomorphometry in Wnt10b(-/-) mice. RESULTS: Oc-Wnt10b mice have increased mandibular bone and impaired eruption of incisors during postnatal development. Analyses of femoral distal metaphyses show significantly higher BMD, bone volume fraction, and trabecular number. Increased bone formation is caused by increases in number of osteoblasts per bone surface, rate of mineral apposition, and percent mineralizing surface. Although number of osteoclasts per bone surface is not altered, Oc-Wnt10b mice have increased total osteoclast activity because of higher bone mass. In Wnt10b(-/-) mice, changes in mineralizing variables and osteoblast perimeter in femoral distal metaphyses were not observed; however, bone formation rate is reduced because of decreased total bone volume and trabecular number. CONCLUSIONS: High bone mass in Oc-Wnt10b mice is primarily caused by increased osteoblastogenesis, with a minor contribution from elevated mineralizing activity of osteoblasts.


Assuntos
Diferenciação Celular , Osteoblastos/metabolismo , Osteocalcina , Osteogênese , Células-Tronco/metabolismo , Proteínas Wnt/biossíntese , Fosfatase Ácida/biossíntese , Fosfatase Ácida/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Densidade Óssea/genética , Diferenciação Celular/genética , Proliferação de Células , Homeostase/genética , Humanos , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Incisivo/patologia , Isoenzimas/biossíntese , Isoenzimas/genética , Mandíbula/crescimento & desenvolvimento , Mandíbula/metabolismo , Mandíbula/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão/genética , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Células-Tronco/patologia , Fosfatase Ácida Resistente a Tartarato , Transgenes , Proteínas Wnt/genética
8.
PLoS One ; 12(4): e0175465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406943

RESUMO

There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.


Assuntos
Densidade Óssea/fisiologia , Ácido Cítrico/metabolismo , Esmalte Dentário/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Osteogênese/fisiologia , Simportadores/metabolismo , Animais , Transportadores de Ácidos Dicarboxílicos/deficiência , Camundongos , Camundongos Knockout , Simportadores/deficiência
9.
Bone ; 97: 20-28, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27939957

RESUMO

Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Marcadores Genéticos/imunologia , Osteogênese/efeitos dos fármacos , Ovariectomia , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Densitometria , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Tempo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
10.
J Bone Miner Res ; 21(6): 855-64, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16753016

RESUMO

UNLABELLED: Transiliac bone biopsies were obtained from 55 women treated with teriparatide or placebo for 12-24 months. We report direct evidence that modeling bone formation at quiescent surfaces was present only in teriparatide-treated patients and bone formation at remodeling sites was higher with teriparatide than placebo. INTRODUCTION: Recombinant teriparatide [human PTH(1-34)], a bone formation agent for the treatment of osteoporosis when given once daily subcutaneously, increases biochemical markers of bone turnover and activation frequency in histomorphometry studies. MATERIALS AND METHODS: We studied the mechanisms underlying this bone-forming action of teriparatide at the basic multicellular unit by the appearance of cement lines, a method used to directly classify surfaces as modeling or remodeling osteons, and by the immunolocalization of IGF-I and IGF-II. Transiliac bone biopsies were obtained from 55 postmenopausal women treated with teriparatide 20 or 40 microg or placebo for 12-24 months (median, 19.8 months) in the Fracture Prevention Trial. RESULTS: A dose-dependent relationship was observed in modeling and mixed remodeling/modeling trabecular hemiosteons. Trabecular and endosteal hemiosteon mean wall thicknesses were significantly higher in both teriparatide groups than in placebo. There was a dose-dependent relationship in IGF-II immunoreactive staining at all bone envelopes studied. The greater local IGF-II presence after treatment with teriparatide may play a key role in stimulating bone formation. CONCLUSIONS: Direct evidence is presented that 12-24 months of teriparatide treatment induced modeling bone formation at quiescent surfaces and resulted in greater bone formation at remodeling sites, relative to placebo.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Ósteon/ultraestrutura , Fator de Crescimento Insulin-Like II/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Teriparatida/uso terapêutico , Idoso , Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/fisiologia , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos , Demografia , Relação Dose-Resposta a Droga , Feminino , Ósteon/crescimento & desenvolvimento , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like II/química , Pós-Menopausa
11.
J Bone Miner Res ; 21(6): 910-20, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16753022

RESUMO

UNLABELLED: GSK-3, a component of the canonical Wnt signaling pathway, is implicated in regulation of bone mass. The effect of a small molecule GSK-3 inhibitor was evaluated in pre-osteoblasts and in osteopenic rats. GSK-3 inhibitor induced osteoblast differentiation in vitro and increased markers of bone formation in vitro and in vivo with concomitant increased bone mass and strength in rats. INTRODUCTION: Inactivation of glycogen synthase kinase -3 (GSK-3) leads to stabilization, accumulation, and translocation of beta-catenin into the nucleus to activate downstream Wnt target genes. To examine whether GSK-3 directly regulates bone formation and mass we evaluated the effect of 603281-31-8, a small molecule GSK-3 alpha/beta dual inhibitor in preosteoblastic cells and in osteopenic rats. MATERIALS AND METHODS: Murine mesenchymal C3H10T1/2 cells were treated with GSK-3 inhibitor (603281-31-8) and assayed for beta-catenin levels, activity of Wnt-responsive promoter, expression of mRNA for bone formation, and adipogenic markers and alkaline phosphatase activity. In vivo, 6-month-old rats were ovariectomized (OVX), allowed to lose bone for 1 month, and treated with GSK-3 inhibitor at 3 mg/kg/day orally for 60 days. At the end of treatment, BMD was measured by DXA, bone formation rate by histomorphometry, vertebral strength (failure in compression), and the expression levels of osteoblast-related genes by real-time PCR. RESULTS: Treatment of C3H10T1/2 cells with the GSK-3 inhibitor increased the levels of beta-catenin accompanied by activation of Wnt-responsive TBE6-luciferase reporter gene. This was associated with an increased expression of mRNA for bone sialoprotein (1.4-fold), collagen alpha1 (I) (approximately 2-fold), osteocalcin (1.2-fold), collagen alpha1(V) (1.5-fold), alkaline phosphatase (approximately 160-fold), and runx2 (1.6-fold), markers of the osteoblast phenotype and bone formation activity. Alkaline phosphatase mRNA expression paralleled alkaline phosphatase activity. The mRNA levels of collagens alpha1 (I), alpha1 (V), biglycan, osteonectin, and runx-2 increased on treatment with the GSK-3 inhibitor in rat femur compared with the OVX control. DXA analyses revealed significant increases in BMC and BMD in cancellous and cortical bone of OVX rats treated with GSK-3 inhibitor. This was associated with increased strength (peak load, energy, and stiffness) assessed by lumbar vertebra load to failure in compression. Histomorphometric analyses showed that 603281-31-8 robustly increased bone formation but did not exclude a small effect on osteoclasts (resorption). CONCLUSIONS: An orally active, small molecule GSK-3 inhibitor induced osteoblast differentiation and increased markers of bone formation in vitro, and increased markers of bone formation, bone mass, and strength in vivo, consistent with a role for the canonical Wnt pathway in osteogenesis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacocinética , Feminino , Glicogênio Sintase Quinase 3 beta , Mesoderma , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Suporte de Carga , Proteínas Wnt/metabolismo , beta Catenina/análise
12.
Mol Endocrinol ; 17(3): 423-35, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12554794

RESUMO

The Cbfa1/Runx2 (referred to herein as Cbfa1) transcription factor has been shown to be essential for osteoblast differentiation and bone formation during embryogenesis. PTH given intermittently is a proven bone anabolic agent. Here, we investigated whether PTH regulates the expression and/or activity of Cbfa1 in osteoblastic cells and in a rat metatarsal organ culture assay. PTH was found to regulate Cbfa1 mRNA in the rat osteosarcoma cell line UMR106 in a concentration-dependent manner. The effect of PTH was mimicked by forskolin, an activator of adenylate cyclase leading to the protein kinase A pathway. PTH administered intermittently for 5 d in vivo was found to stimulate Cbfa1 protein in the rat proximal tibiae metaphysis. To demonstrate PTH regulation of Cbfa1 activity, a construct containing six tandem Cbfa1 binding elements fused to luciferase was shown to be rapidly stimulated in response to PTH. This stimulation preceded the effects on mRNA regulation and resulted from a protein kinase A-mediated increase in Cbfa1 activity. Finally, using a neonate rat metatarsal organ culture system, we demonstrated dose-dependent anabolic responsiveness to PTH and to Cbfa1 overexpression from an adenoviral construct. We further showed that Cbfa1 antisense oligonucleotides that blocked adenoviral Cbfa1-induced anabolic effects in this organ culture model also abolished the PTH-mediated anabolic increase. These findings suggest a requirement for Cbfa1 in mediating the anabolic effects of PTH. Thus, regulation of Cbfa1 expression or activity is an important mechanism by which PTH controls osteoblast function.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Neoplasias , Osteogênese/fisiologia , Hormônio Paratireóideo/farmacologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Animais , Animais Recém-Nascidos , Northern Blotting , Subunidade alfa 1 de Fator de Ligação ao Core , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Ossos do Metatarso/metabolismo , Osteogênese/genética , Hormônio Paratireóideo/fisiologia , Ratos , Ratos Sprague-Dawley , Elementos de Resposta/genética , Elementos de Resposta/fisiologia , Transdução de Sinais/genética , Tíbia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Células Tumorais Cultivadas
13.
J Bone Miner Res ; 19(4): 623-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15005850

RESUMO

UNLABELLED: OVX monkeys treated for 18 months with 1 or 5 microg/kg/d teriparatide [PTH (1-34)] had significantly stronger proximal femora relative to ovariectomized controls. Teriparatide enhancement of cortical area, cortical width, and trabecular bone volume seemed to more than compensate for the dose-dependent increase in cortical porosity. Beneficial effects of teriparatide treatment on the proximal femur persisted beyond the treatment period and may extend to the marrow. INTRODUCTION: We conducted a detailed quantitative analysis of the effects of teriparatide on the proximal femur of ovariectomized monkeys. Teriparatide increased bone mass, enhanced structural architecture, and strengthened the hip, despite increasing cortical porosity. MATERIALS AND METHODS: Monkeys were treated with vehicle (sham or OVX controls), 1 microg/kg/day teriparatide [parathyroid hormone (1-34); PTH1], or 5 microg/kg/day teriparatide (PTH5) for 18 months or for 12 months followed by 6 months of treatment withdrawal (PTH1W and PTH5W, respectively). Excised proximal femora were analyzed by microCT, conventional histomorphometry, and biomechanics. RESULTS AND CONCLUSIONS: The femoral neck showed significant reduction in trabecular bone volume (BV/TV) for OVX compared with sham, whereas PTH1 BV/TV was restored to sham levels and PTH5 BV/TV was greater than sham and OVX. The withdrawal groups had BV/TVs intermediate between sham and OVX. PTH1 had trabecular number (Tb.N) greater than OVX, and PTH5 Tb.N was greater than sham and OVX. The withdrawal groups had Tb.Ns intermediate between sham and OVX. No differences between groups were observed for trabecular orientation or trabecular thickness. Teriparatide dose-dependently increased bone formation rate and activation frequency in the femoral neck. Cellular composition analyses suggested a tendency of ovariectomy to increase adiposity of marrow by 100%, whereas PTH tended to reduce adipocyte number and increase osteoblast number compared with OVX. Analyses of the cortex showed dose-dependent elevation of cortical porosity, which was consistent with enhanced bone turnover with treatment. Cortical porosity was reduced after withdrawal of teriparatide, because PTH1W cortical porosity was lower than OVX, whereas PTH5W cortical porosity was intermediate between sham and OVX. Increased cortical porosity did not weaken the proximal femora. Biomechanics showed that ovariectomy weakened proximal femora compared with sham, but PTH1, PTH5, and PTH1W were stronger than OVX and not different from sham. PTH5W strength was intermediate between sham and OVX. Therefore, teriparatide had beneficial effects on the proximal femur, despite increasing cortical porosity. Cortical porosity did not adversely affect the mechanical integrity of the proximal femora, because enhanced cortical area and trabecular bone volume more than compensated for the porosity. Much of the beneficial effects of teriparatide were retained after 6 months withdrawal from treatment. PTH effects on the femoral neck were not limited to bone but may include inhibition of OVX-stimulated adiposity of the marrow.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Teriparatida/farmacologia , Animais , Densidade Óssea/fisiologia , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiopatologia , Macaca fascicularis , Osteoporose/fisiopatologia , Ovariectomia , Porosidade/efeitos dos fármacos , Radiografia , Proteínas Recombinantes/uso terapêutico , Resistência à Tração , Teriparatida/uso terapêutico
14.
J Bone Miner Res ; 17(12): 2256-64, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12469920

RESUMO

Long-term effects of a new selective estrogen receptor modulator (SERM) arzoxifene were examined in ovariectomized (OVX) rats. Arzoxifene was administered postoperatively (po) at 0.1 mg/kg per day or 0.5 mg/kg per day to 4-month-old rats, starting 1 week after OVX for 12 months. At study termination, body weights for arzoxifene groups were 16-17% lower than OVX control, which was caused by mainly reduced gain of fat mass. Longitudinal analysis of the proximal tibial metaphysis (PTM) by computed tomography (CT) at 0, 2, 4, 6,9, and 12 months showed that OVX induced a 22% reduction in bone mineral density (BMD) at 2 months, which narrowed to a 12% difference between sham-operated (sham) and OVX rats by 12 months. Both doses of arzoxifene prevented the OVX-induced decline in BMD. Histomorphometry of the PTM showed that arzoxifene prevented bone loss by reducing osteoclast number in OVX rats. Arzoxifene maintained bone formation indices at sham levels and preserved trabecular number above OVX controls. Micro-CT analysis of lumbar vertebrae showed similar preservation of BMD compared with OVX, which were not different from sham. Compression testing of the vertebra and three-point bending testing of femoral shaft showed that strength and toughness were higher for arzoxifene-treated animals compared with OVX animals. Arzoxifene reduced serum cholesterol by 44-59% compared with OVX. Uteri wet weight from arzoxifene animals was 38-40% of sham compared with OVX rats, which were 29% of sham. Histology of the uterine endometrium showed that cell heights from both doses of arzoxifene were not significantly different from OVX controls. In summary, treatment of OVX rats with arzoxifene for nearly one-half of a lifetime maintained beneficial effects on cholesterol and the skeleton. These data suggest that arzoxifene may be a useful therapeutic agent for osteoporosis in postmenopausal women.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Colesterol/sangue , Ovariectomia , Piperidinas/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tiofenos/administração & dosagem , Animais , Peso Corporal , Feminino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tiofenos/farmacologia
15.
Endocrinology ; 144(5): 2008-15, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697709

RESUMO

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1-34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17 alpha-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 microg/kg, twice weekly), EE (0.1 mg/kg per d), or Ral (1 mg/kg per d) for 10 months before switching to teriparatide 30 microg/kg per d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.


Assuntos
Alendronato/administração & dosagem , Etinilestradiol/administração & dosagem , Osteogênese/efeitos dos fármacos , Cloridrato de Raloxifeno/administração & dosagem , Teriparatida/farmacologia , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Esquema de Medicação , Feminino , Fêmur/efeitos dos fármacos , Fêmur/fisiopatologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiopatologia , Resistência à Tração , Tíbia/efeitos dos fármacos , Tíbia/patologia , Fatores de Tempo
16.
PLoS One ; 9(1): e86454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466105

RESUMO

Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.


Assuntos
Adiposidade/genética , Osso e Ossos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Papilas Gustativas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Densidade Óssea , Remodelação Óssea/genética , Osso e Ossos/citologia , Tamanho Celular , Dieta , Glucose/metabolismo , Masculino , Camundongos , Camundongos Knockout
17.
Bone ; 59: 139-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269280

RESUMO

Cortical bone, the dominant component of the human skeleton by volume, plays a key role in protecting bones from fracture. We analyzed the cortical bone effects of teriparatide treatment in postmenopausal women with osteoporosis who had previously received long-term alendronate (ALN) therapy or were treatment naïve (TN). Tetracycline-labeled paired iliac crest biopsies obtained from 29 ALN-pretreated and 16 TN women were evaluated for dynamic histomorphometric parameters of bone formation at the periosteal, endocortical and intracortical bone compartments, before and after 24months of teriparatide treatment. At baseline, the frequency of specimens without any endocortical and periosteal tetracycline labeling, and the percentage of quiescent osteons, was higher in the ALN than the TN group. Endocortical and periosteal mineralizing surface (MS/BS%), periosteal bone formation rate (BFR/BS), mineral apposition rate (MAR) and the number of intracortical forming osteons were significantly lower in the ALN-pretreated patients than in the TN group. Following teriparatide treatment, the frequency of endocortical and periosteal unlabeled biopsies decreased; in the ALN-pretreated group the percentage of quiescent osteons decreased and, in contrast, forming and resorbing osteons were increased. Teriparatide treatment resulted in significant increases of MAR in the endocortical, and MS/BS% in the periosteal compartment in the ALN-pretreated group. Most indices of bone formation remained lower in the ALN-pretreated group compared with the TN group at study end. Endocortical wall width was increased in both ALN-pretreated and TN groups. Cortical porosity and cortical thickness were significantly increased in the ALN-pretreated group after teriparatide treatment. Our results suggest that 24months of teriparatide treatment increases cortical bone formation and cortical turnover in patients who were either TN or had previous ALN therapy.


Assuntos
Alendronato/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Teriparatida/uso terapêutico , Idoso , Alendronato/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/fisiopatologia , Teriparatida/farmacologia
18.
Spine (Phila Pa 1976) ; 37(15): 1275-82, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22281479

RESUMO

STUDY DESIGN: Controlled animal experiments. OBJECTIVE: To test the dose and efficacy of teriparatide in a rat spinal fusion model. SUMMARY OF BACKGROUND DATA: Teriparatide was shown to enhance spinal fusion in rats and rabbits previously, but the dose-dependent effect of teriparatide in spinal fusion in rats was not well characterized. METHODS: A 0.5 × 0.5 cm trabecular bone graft was taken and implanted onto the L5 and L6 transverse processes of the same rat. Rats were randomly assigned into 3 groups: saline vehicle control (Vehicle), teriparatide 4 µg/kg per day (PTH4), and teriparatide 23 µg/kg per day (PTH23) subcutaneous injections for 4 weeks (5 d per wk). The L5-L6 spinal segments were harvested at week 4, and assessments included radiography, micro-computed tomography, manual palpation, and histomorphometry. L3 vertebra, femurs, and serum bone markers were examined. RESULTS: The average radiographical score of L5-L6 fusion in Vehicle, PTH4, and PTH23 groups was 1.53, 2.87, and 4.11, respectively, with the PTH23 being significantly higher (P = 0.001 vs. Vehicle). The average micro-computed tomographic score of L5-L6 fusion in Vehicle, PTH4, and PTH23 groups was 1.53, 2.40, and 3.74, respectively (P = 0.001, PTH23 vs. Vehicle and PTH4). Manual palpation showed that fusion rate was 20%, 50%, and 67.7% in Vehicle, PTH4, and PTH23 groups, respectively. The bone mineralization apposition rate at the fusion site was significantly increased in a dose-dependent manner among the groups. Teriparatide significantly increased vertebral and femoral bone mineral density, bone mineral content, and trabecular area in a dose-dependent manner relative to Vehicle. No difference was found between the circulating Procollagen type I N-terminal propeptide and intact osteocalcin levels in the serum at 4 weeks after treatments. CONCLUSION: Teriparatide at 23 µg/kg per day for 4 weeks showed anabolic skeletal effects and significantly enhanced spinal fusion rate in rats, whereas teriparatide at 4 µg/kg per day had also anabolic effects but did not significantly enhance spinal fusion rate. Higher doses of teriparatide may be needed to promote spinal fusion in short-term application.


Assuntos
Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Teriparatida/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/farmacologia , Transplante Ósseo/métodos , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Vértebras Lombares/diagnóstico por imagem , Masculino , Osteocalcina/sangue , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Teriparatida/administração & dosagem , Fatores de Tempo , Transplante Autólogo , Resultado do Tratamento , Microtomografia por Raio-X
19.
Bone ; 48(5): 972-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262402

RESUMO

The periosteum contains osteogenic cells that regulate the outer shape of bone and contribute to determine its cortical thickness, size and position. We assessed the effects of subcutaneous injections of teriparatide (TPTD, 20µg/day) or oral strontium ranelate (SrR, 2g/day) in postmenopausal women with osteoporosis on new bone formation activity at the periosteal and endosteal bone surfaces using dynamic histomorphometric measurements. Evaluable tetracycline-labeled transiliac crest bone biopsies were analyzed from 27 patients in the TPTD group, and 22 in the SrR group after six months of treatment. Measurements were conducted on the thicker and thinner cortices separately, and comparisons between the thicker, thinner and combined cortices were carried out. At the combined periosteal cortex, the mineralization surface as a percent of bone surface (MS/BS%) was greater for TPTD (mean±SE: 8.08±1.22%) than SrR (3.22±1.05%) (p<0.005). The difference in mineral apposition rate (MAR) between TPTD (0.35±0.06µm/day) and SrR (0.14±0.06µm/day) was also significant (p<0.05), while that of bone formation rate per bone surface (BFR/BS) between TPTD (0.014±0.004 mm(3)/mm(2)/year) and SrR (0.004±0.003 mm(3)/mm(2)/year) was not (p=0.057). Statistically significant differences between the two treatments were also observed for MS/BS%, BFR/BS, MAR and the double-labeled perimeter in the periosteum of the thicker, but not thinner, iliac crest cortices. The comparison between the thicker and thinner cortices of both periosteal and endosteal surfaces showed statistically significant differences for MAR and the double-labeled perimeter for TPTD treated women. There were no statistically significant differences in any bone formation dynamic measurements between the two cortices in the SrR group. In conclusion, most of the bone formation and mineralization variables were significantly higher for TPTD- than SrR-treated women at both the periosteal and endosteal combined cortices. The response to TPTD for dynamic bone formation measurements in the periosteal surface was greater for the thicker than thinner cortex, but this difference was not significant in SrR treated patients. This may reflect a greater ability of TPTD to enhance responsiveness of bone to the mechanical loading environment. These effects on bone formation may underlie the improvement in bone quality in patients with osteoporosis treated with TPTD.


Assuntos
Ílio/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Periósteo/efeitos dos fármacos , Teriparatida/farmacologia , Teriparatida/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Biópsia , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Feminino , Humanos , Ílio/patologia , Osteoporose Pós-Menopausa/patologia , Periósteo/patologia
20.
Endocrinology ; 152(5): 1767-78, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343258

RESUMO

We compared teriparatide (TPTD) and strontium ranelate (SR) efficacy on bone formation activity in a mature rat model of estrogen-deficiency bone loss. Rats were ovariectomized (OVX) at age 6 months and permitted to lose bone for 2 months to establish osteopenia before initiation of treatment with TPTD (5 or 15 µg/kg · d sc) or SR (150 or 450 mg/kg · d oral gavage). After 3 wk, RT-PCR analyses of bone formation genes in the distal femur metaphysis showed significant elevation of collagen 1α2, osteocalcin, bone sialoprotein, alkaline phosphatase, and Runx2 gene expression at both TPTD doses, relative to OVX controls. SR had no significant effect on expression of these genes. TPTD treatment for 12 wk dose dependently increased lumbar vertebral (LV) and femoral midshaft bone mineral content (BMC) and bone mineral density over pretreatment and age-matched OVX controls. SR 150 increased BMC, and SR 450 increased BMC and bone mineral density of femoral midshaft and LV over OVX controls. There were significant dose-dependent TPTD increases of LV and femoral neck strength, and TPTD 15 also increased midshaft strength compared with pretreatment and age-matched OVX controls. SR did not enhance bone strength relative to pretreatment or age-matched OVX controls. Histomorphometry of the proximal tibial metaphysis showed dose-dependent effects of TPTD on trabecular area, number, width, and osteoblast surface, bone mineralizing surface, and bone formation rate relative to pretreatment and age-matched OVX controls, whereas SR had no effect on these parameters. These findings confirmed the bone anabolic efficacy of teriparatide, but not SR in mature, osteopenic, OVX rats.


Assuntos
Doenças Ósseas Metabólicas/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Ovariectomia , Teriparatida/farmacologia , Fosfatase Alcalina/genética , Anabolizantes/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Colágeno Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Relação Dose-Resposta a Droga , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Sialoproteína de Ligação à Integrina/genética , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Compostos Organometálicos/farmacologia , Osteocalcina/sangue , Osteocalcina/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiofenos/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa