RESUMO
BACKGROUND: Perfluoroalkylated substances (PFAS) are man-made, persistent organic compounds with immune-modulating potentials. Given that pregnancy itself represents an altered state of immunity, PFAS exposure-related immunotoxicity is an important environmental factor to consider in SARS-CoV-2 infection during pregnancy as it may further affect humoral immune responses. AIM: To investigate the relationship between maternal plasma PFAS concentrations and SARS-CoV-2 antibody levels in a NYC-based pregnancy cohort. METHODS: Maternal plasma was collected from 72 SARS-CoV-2 IgG + participants of the Generation C Study, a birth cohort established at the beginning of the COVID-19 pandemic in New York City. Maternal SARS-CoV-2 anti-spike IgG antibody levels were measured using ELISA. A panel of 16 PFAS congeners were measured in maternal plasma using a targeted UHPLC-MS/MS-based assay. Spearman correlations and linear regressions were employed to explore associations between maternal IgG antibody levels and plasma PFAS concentrations. Weighted quantile sum (WQS) regression was also used to evaluate mixture effects of PFAS. Models were adjusted for maternal age, gestational age at which SARS-CoV-2 IgG titer was measured, COVID-19 vaccination status prior to IgG titer measurement, maternal race/ethnicity, parity, type of insurance and pre-pregnancy BMI. RESULTS: Our study population is ethnically diverse with an average maternal age of 32 years. Of the 16 PFAS congeners measured, nine were detected in more than 60% samples. Importantly, all nine congeners were negatively correlated with SARS-CoV-2 anti-spike IgG antibody levels; n-PFOA and PFHxS, PFHpS, and PFHxA reached statistical significance (p < 0.05) in multivariable analyses. When we examined the mixture effects using WQS, a quartile increase in the PFAS mixture-index was significantly associated with lower maternal IgG antibody titers (beta [95% CI] = -0.35 [-0.52, -0.17]). PFHxA was the top contributor to the overall mixture effect. CONCLUSIONS: Our study results support the notion that PFAS, including short-chain emerging PFAS, act as immunosuppressants during pregnancy. Whether such compromised immune activity leads to downstream health effects, such as the severity of COVID-19 symptoms, adverse obstetric outcomes or neonatal immune responses remains to be investigated.
Assuntos
COVID-19 , Fluorocarbonos , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Antivirais , COVID-19/epidemiologia , Estudos Transversais , Fluorocarbonos/toxicidade , Imunoglobulina G , Pandemias , SARS-CoV-2 , Espectrometria de Massas em TandemRESUMO
OBJECTIVE: Bisphenol A and phthalate are known endocrine disruptors and capable of inducing epigenetic changes in the human population. However, their impact on the placenta is less well studied. Our objective was to measure the effect of exposure to bisphenol A and benzyl butyl phthalate in first-trimester HTR8-SVneo and third-trimester 3A-sub E trophoblast cells by profiling the DNA methylation pattern of the imprinting control region of the IGF2 (insulin-like growth factor) and H19 genes. METHODS: Human placental HTR8-SVneo and 3A-sub E cell lines were treated with two sub-lethal concentrations of bisphenol A and benzyl butyl phthalate. Demethylating agent, 5-azacytidine, was used as a positive control. Cells were harvested on post-treatment days 1 and 4. The methylation profile of six CpG dinucleotide sites, part of the CTCF 6 binding site of the IGF2/H19 imprinting control region, was determined by pyrosequencing. RESULTS: In the first-trimester HTR8-SVneo cell line, we observed a significant increased methylation of the CpG sites 3, 4 when treated with a high concentration of bisphenol A or benzyl butyl phthalate while increased methylation at site 6 for both high and low dose treatment on day 4. Demethylation of the CpG sites 1, 4, and 6 was observed when treated with 5-azacytidine on day 4. In the third-trimester 3A-sub E cell line, no significant changes in the methylation profile were observed under any treatment conditions. CONCLUSIONS: The results of this study demonstrate the capability of epigenetic changes in human placenta cells induced by bisphenol A and benzyl butyl phthalate. The observed methylation changes only in the first-trimester HTR8-SVneo cells phthalate may reflect a window of epigenetic susceptibility related to these environmental toxicants.
RESUMO
INTRODUCTION: Maternal SARS-CoV-2 infection during pregnancy is associated with adverse pregnancy outcomes and can have effects on the placenta, even in the absence of severe disease or vertical transmission to the fetus. This study aimed to evaluate histopathologic and molecular effects in the placenta after SARS-CoV-2 infection during pregnancy. METHODS: We performed a study of 45 pregnant participants from the Generation C prospective cohort study at the Mount Sinai Health System in New York City. We compared histologic features and the expression of 48 immune and trophoblast genes in placentas delivered from 15 SARS-CoV-2 IgG antibody positive and 30 IgG SARS-CoV-2 antibody negative mothers. Statistical analyses were performed using Fisher's exact tests, Spearman correlations and linear regression models. RESULTS: The median gestational age at the time of SARS-CoV-2 IgG serology test was 35 weeks. Two of the IgG positive participants also had a positive RT-PCR nasal swab at delivery. 82.2% of the infants were delivered at term (≥37 weeks), and gestational age at delivery did not differ between the SARS-CoV-2 antibody positive and negative groups. No significant differences were detected between the groups in placental histopathology features. Differential expression analyses revealed decreased expression of two trophoblast genes (PSG3 and CGB3) and increased expression of three immune genes (CXCL10, TLR3 and DDX58) in placentas delivered from SARS-CoV-2 IgG positive participants. DISCUSSION: SARS-CoV-2 infection during pregnancy is associated with gene expression changes of immune and trophoblast genes in the placenta at birth which could potentially contribute to long-term health effects in the offspring.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Anticorpos Antivirais , Feminino , Humanos , Imunoglobulina G , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Estudos Prospectivos , SARS-CoV-2 , Trofoblastos/patologiaRESUMO
Loss of imprinting (LOI) is the reactivation of the silenced allele of an imprinted gene, leading to perturbation of monoallelic expression. We tested the hypothesis that LOI of PLAGL1, a representative maternally imprinted gene, occurs through an all-or-none process leading to a mixture of fully imprinted and nonimprinted cells. Herein using a quantitative RT-PCR-based experimental approach, we measured LOI at the single cell level in human trophoblasts and demonstrated a broad distribution of LOI among cells exhibiting LOI, with the mean centered at approximately 100% LOI. There was a significant (P < 0.01) increase in expression after 2 days of 5-aza-2'-deoxycytidine (AZA) treatment and a significant (P < 0.01) increase in LOI after both 1 and 2 days of AZA treatment, while the distribution remained broad and centered at approximately 100% LOI. We propose a transcriptional pulsing model to show that the broadness of the distribution reflects the stochastic nature of expression between the two alleles in each cell. The mean of the distribution of LOI in the cells is consistent with our hypothesis that LOI occurs by an all-or-none process. All-or-none LOI could lead to a second distinct cell population that may have a selective advantage, leading to variation of LOI in normal tissues, such as the placenta, or in neoplastic cells.
Assuntos
Impressão Genômica , RNA Mensageiro/metabolismo , Alelos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Decitabina , Expressão Gênica , Humanos , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Intrauterine growth restriction (IUGR) is an obstetrical complication with an increased risk of perinatal mortality and morbidity. The uterus, once considered to be a sterile environment, has now been described in recent microbiome studies to harbor diverse commensal placenta microbiota, as well as potentially pathogenic flora known to cause infection. Therefore, in this pilot study, we tested whether IUGR was associated with changes to the reproductive microbiome. The reproductive microbiome was surveyed using 16S sequencing (20 IUGR, 20 controls). Alpha and beta diversity were compared, and differential taxa features associated with IUGR were identified. Microbial screening of the placenta demonstrated a diverse range of flora predominantly including Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. Neither alpha- nor beta-diversity was significantly different by IUGR status. However, at the taxa level, IUGR patients had significantly higher prevalence of Neisseriaceae, mucosal ß-hemolytic bacteria known to uptake iron-bound host proteins including hemoglobin. Moreover, the increase in anaerobic bacteria such as Desulfovibrio reflects the emergence of a hypoxic environment in the IUGR placenta. Further analysis of the reproductive microbiome of IUGR samples showed lower levels of H202-producing Bifidobacterium and Lactobacillus that switch from respiration to fermentation, a less energetic metabolic process, when oxygen levels decrease. Source tracking analysis showed that the placental microbial contents were predominantly contributed from an oral source, as compared to a gut or vaginal source. Our results suggest that the reproductive microbiome profiles may, in the future, constitute potential biomarkers for fetal health during pregnancy, while Neisseriaceae may constitute promising therapeutic targets for IUGR treatment.
Assuntos
Bactérias/isolamento & purificação , Retardo do Crescimento Fetal/microbiologia , Microbiota , Placenta/microbiologia , Reprodução , Adulto , Bactérias/metabolismo , Carga Bacteriana , Estudos de Casos e Controles , Metabolismo Energético , Feminino , Fermentação , Retardo do Crescimento Fetal/diagnóstico , Humanos , Projetos Piloto , Gravidez , Ribotipagem , Adulto JovemRESUMO
OBJECTIVE: The purpose of this study was to investigate imprinting patterns in first-trimester human placentas. STUDY DESIGN: Using samples of 17 first-trimester and 14 term placentas from uncomplicated pregnancies, we assessed loss of imprinting (LOI) at the RNA level in a panel of 14 genes that are known to be imprinted in the placenta with the use of a quantitative allele-specific reverse transcriptase polymerase chain reaction analysis of those genes that contained readout single nucleotide polymorphisms in their transcripts. RESULTS: There is significant LOI (ie, biallelic expression) in all 14 genes in first-trimester placentas. LOI was more variable and generally at lower levels at term. Although there is little difference in gene expression, the level of LOI is higher in the first-trimester placentas, compared with term placentas. CONCLUSION: Genomic imprinting appears to be a dynamic maturational process across gestation in human placenta. In contrast with prevailing theories, epigenetic imprints may continue to evolve past 12 weeks of gestation.
Assuntos
Impressão Genômica , Genômica , Placenta/fisiologia , Primeiro Trimestre da Gravidez/genética , Epigênese Genética/genética , Feminino , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
There is consensus that ischemia/reperfusion injury associated with preeclampsia (PE) promotes both placental damage and the release of factors leading to maternal endothelium dysfunction, a hallmark of this potentially life-threatening syndrome. These factors include plasminogen activator inhibitor-1 (PAI-1) and soluble fms-like tyrosine kinase-1 (sFlt-1). The goal of this study was to further characterize placental factors involved in the pathophysiology of PE. Thus, DNA microarray gene profiling was utilized to identify mRNA differentially regulated in placentas from women with severe PE compared to both preterm (PC) and term control (TC) groups. Microarray studies detected an upregulation of mRNA for ceruloplasmin, a copper-containing iron transport protein with antioxidant ferroxidase properties, in PE compared to PC and TC placentas, respectively. Quantitative real-time PCR confirmed these results by demonstrating significant increases in ceruloplasmin mRNA in PE vs PC and TC placentas. Supporting previous reports, the expression of sFlt-1 and PAI-1 were also upregulated in PE placentas. Immunohistochemistry localized ceruloplasmin to the intervillous space in PE and PC placentas, whereas stronger syncytial staining was noted in PE. Western blotting confirmed a significant increase in ceruloplasmin levels in placental tissue in PE compared to PC groups. PCR identified the presence of mRNA for ceruloplasmin in primary cultures of syncytiotrophoblasts, but not villous-derived fibroblasts, suggesting that syncytium is the site of ceruloplasmin synthesis in placenta. Hypoxic treatment (1% O(2)) of syncytiotrophoblasts enhanced levels of ceruloplasmin mRNA approximately 25-fold, a significantly greater upregulation than that noted for PAI-1 and sFlt-1, suggesting that enhanced ceruloplasmin expression is a sensitive marker of syncytial hypoxia. We suggest that syncytial ceruloplasmin and its associated ferroxidase activity, induced by the hypoxia accompanying severe PE, is important in an endogenous cellular program to mitigate the damaging effects of subsequent reperfusion injury at this site.
Assuntos
Ceruloplasmina/metabolismo , Hipóxia/fisiopatologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Pré-Eclâmpsia/fisiopatologia , Gravidez , Nascimento Prematuro/metabolismo , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo , Regulação para CimaRESUMO
Preeclampsia is associated with an increased release of factors from the placental syncytium into maternal blood, including the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin, the antifibrinolytic factor plasminogen activator inhibitor-1, prostanoids, lipoperoxides, cytokines, and microparticles. These factors are suggested to promote maternal endothelium dysfunction and are associated with placental damage in pregnancies also complicated with intrauterine growth restriction (IUGR). In this report, we briefly describe the interaction of syncytial factors with hypoxia, reactive oxygen species, and apoptosis in the pathophysiology of preeclampsia and IUGR. Given the critical role of the syncytium in these complications of pregnancy, we also present a novel methodology in which laser capture microdissection followed by Western blotting is used to assess levels of syncytial Fas ligand, a key protein in the apoptotic cascade.
Assuntos
Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Células Gigantes/metabolismo , Neovascularização Fisiológica , Placenta/metabolismo , Pré-Eclâmpsia/patologia , Apoptose , Proteína Ligante Fas , Feminino , Retardo do Crescimento Fetal/diagnóstico , Humanos , Lasers , Modelos Biológicos , Pré-Eclâmpsia/diagnóstico , Gravidez , Espécies Reativas de Oxigênio , Trofoblastos/metabolismoRESUMO
While the developing fetus is largely shielded from the external environment through the protective barrier provided by the placenta, it is increasingly appreciated that environmental agents are able to cross and even accumulate in this vital organ for fetal development. To examine the potential influence of environmental pollutants on the placenta, we assessed the relationship between polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and several epigenetic marks linked to fetoplacental development. We measured IGF2/H19 imprint control region methylation, IGF2 and H19 expression, IGF2 loss of imprinting (LOI) and global DNA methylation levels in placenta (n = 116) collected in a formative research project of the National Children's Study to explore the relationship between these epigenetic marks and the selected organic environmental pollutants. A positive association was observed between global DNA methylation and total PBDE levels (P <0.01) and between H19 expression and total PCB levels (P = 0.04). These findings suggest that differences in specific epigenetic marks linked to fetoplacental development occur in association with some, but not all, measured environmental exposures.