Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Sci ; 41(2): 297-305, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33877545

RESUMO

Since the outbreak of the novel corona virus disease 2019 (COVID-19) at the end of 2019, specific antiviral drugs have been lacking. A Chinese patent medicine Toujiequwen granules has been promoted in the treatment of COVID-19. The present study was designed to reveal the molecular mechanism of Toujiequwen granules against COVID-19. A network pharmacological method was applied to screen the main active ingredients of Toujiequwen granules. Network analysis of 149 active ingredients and 330 drug targets showed the most active ingredient interacting with many drug targets is quercetin. Drug targets most affected by the active ingredients were PTGS2, PTGS1, and DPP4. Drug target disease enrichment analysis showed drug targets were significantly enriched in cardiovascular diseases and digestive tract diseases. An "active ingredient-target-disease" network showed that 57 active ingredients from Toujiequwen granules interacted with 15 key targets of COVID-19. There were 53 ingredients that could act on DPP4, suggesting that DPP4 may become a potential new key target for the treatment of COVID-19. GO analysis results showed that key targets were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity and other functions. KEGG analysis showed they were mainly concentrated in viral protein interaction with cytokine and cytokine receptors and endocrine resistance pathway. The evidence suggests that Toujiequwen granules might play an effective role by improving the symptoms of underlying diseases in patients with COVID-19 and multi-target interventions against multiple signaling pathways related to the pathogenesis of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , SARS-CoV-2/genética , Antivirais/química , Antivirais/farmacologia , COVID-19/genética , COVID-19/virologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Dipeptidil Peptidase 4/genética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/classificação , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Quercetina/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos
2.
Cell Res ; 13(5): 319-33, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14672555

RESUMO

To determine the possible role of the epigenetic mechanisms in carcinogenesis of the hepatocellular carcinoma, we methylation-profiled the promoter CpG islands of twenty four genes both in HCC tumors and the neighboring non-cancerous tissues of twenty eight patients using the methylation-specific PCR (MSP) method in conjunction with the DNA sequencing. In comparison with the normal liver tissues from the healthy donors, it was found that while remained unmethylated the ABL, CAV, EPO, GATA3, LKB1, NEP, NFL, NIS and p27KIP1 genes, varying extents of the HCC specific hypermethylation were found associated with the ABO, AR, CSPG2, cyclin a1, DBCCR1, GALR2, IRF7, MGMT, MT1A, MYOD1, OCT6, p57KIP2, p73, WT1 genes, and demethylation with the MAGEA1 gene, respectively. Judged by whether the hypermethylated occurred in HCC more frequently than in their neighboring normal tissues, the hypermethylation status of the AR, DBCCR1, IRF7, OCT6, and p73 genes was considered as the event specific to the late stage, while that the rest that lacked such a distinguished contrast, as the event specific to the early stage of HCC carcinogenesis. Among all the clinical pathological parameters tested for the association with, the hypermethylation of the cyclin a1 gene was more prevalent in the non-cirrhosis group (P=0.021) while the hypermethylated p16INK4a gene was more common in the cirrhosis group (P=0.017). The concordant methylation behaviors of nineteen genes, including the four previously studied and their association with cirrhosis has been evaluated by the best subgroup selection method. The data presented in this report would enable us to shape our understanding of the mechanisms for the HCC specific loss of the epigenetic stability of the genome, as well as the strategy of developing the novel robust methylation based diagnostic and prognostic tools.


Assuntos
Carcinoma Hepatocelular/genética , Ilhas de CpG , Metilação de DNA , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética , Oncogenes , Reação em Cadeia da Polimerase
3.
Hepatology ; 38(3): 735-44, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12939600

RESUMO

We currently identified a liver-specific gene that encodes a novel zona pellucida (ZP) domain-containing protein named liver-specific ZP domain-containing protein (LZP). The full-length complementary DNA (cDNA) of human LZP has 2,255 bp with a complete open reading frame (ORF) of 1,635 bp. The gene is localized on chromosome 10q21.3 and spans 40 kb with 9 encoding exons and 8 introns. The deduced protein sequence has 545 amino acid residues, with an N-terminal signal peptide followed by 3 epidermal growth factor (EGF)-like domains and a ZP domain in C-terminal section. Interestingly, human LZP is expressed specifically in liver out of 23 tissues examined, and its mouse counterpart was detected at very early stage during embryo development. Moreover, LZP can be secreted into blood, albeit the protein was localized mainly on the nuclear envelop of hepatocytes. Most importantly, LZP is down-regulated in hepatocellular carcinoma (HCC) and HCC cell lines; meanwhile, the decreased level of hLZP messenger RNA (mRNA) could, at least in some HCC samples, be related to the methylation status of the putative LZP promoter. However, overexpression of hLZP in HCC cell line SMMC-7721 and human liver cell line L02 by stable cell transfection did not inhibit cell growth, implying that the down-regulation of hLZP in HCC might be a consequence of the dedifferentiation involved in hepatocarcinogenesis. In conclusion, these data suggest that LZP is a liver-specific protein involved possibly in hepatocellular function and development, and the protein could be used as potential negative biomarker for HCC pathologic diagnosis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Zona Pelúcida , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Carcinoma Hepatocelular/patologia , Divisão Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Metilação de DNA , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Hepatócitos/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Frações Subcelulares/metabolismo , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa