Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008542

RESUMO

The continuous threat of drug-resistant Klebsiella pneumoniae justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD+. NNAT catalyses the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD+/NaAD). In addition, it employs divalent cations for co-substrate binding and catalysis and has a preference for different divalent cations. Here, the biophysical structure of NNAT from K. pneumoniae (KpNNAT) and the impact of divalent cations on its activity, conformational stability and substrate-binding are described using experimental and computational approaches. The experimental study was executed using an enzyme-coupled assay, far-UV circular dichroism, extrinsic fluorescence spectroscopy, and thermal shift assays, alongside homology modelling, molecular docking, and molecular dynamic simulation. The structure of KpNNAT revealed a predominately α-helical secondary structure content and a binding site that is partially hydrophobic. Its substrates ATP and NMN share the same binding pocket with similar affinity and exhibit an energetically favourable binding. KpNNAT showed maximum activity and minimal conformational changes with Mg2+ as a cofactor compared to Zn2+, Cu2+ and Ni2+. Overall, ATP binding affects KpNNAT dynamics, and the dynamics of ATP binding depend on the presence and type of divalent cation. The data obtained from this study would serve as a basis for further evaluation towards designing structure-based inhibitors with therapeutic potential.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Klebsiella pneumoniae/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Sítios de Ligação/fisiologia , Simulação por Computador , Cristalografia por Raios X/métodos , Simulação de Acoplamento Molecular/métodos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo
2.
Protein J ; 43(4): 751-770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981945

RESUMO

Infections that are acquired due to a prolonged hospital stay and manifest 2 days following the admission of a patient to a health-care institution can be classified as hospital-acquired infections. Klebsiella pneumoniae (K. pneumoniae) has become a critical pathogen, posing serious concern globally due to the rising incidences of hypervirulent and carbapenem-resistant strains. Glutaredoxin is a redox protein that protects cells from oxidative stress as it associates with glutathione to reduce mixed disulfides. Protein adenylyltransferase (PrAT) is a pseudokinase with a proposed mechanism of transferring an AMP group from ATP to glutaredoxin. Inducing oxidative stress to the bacterium by inhibiting the activity of PrAT is a promising approach to combating its contribution to hospital-acquired infections. Thus, this study aims to overexpress, purify, and analyse the effects of ATP and Mg2+ binding to Klebsiella pneumoniae PrAT (KpPrAT). The pET expression system and nickel affinity chromatography were effective in expressing and purifying KpPrAT. Far-UV CD spectroscopy demonstrates that the protein is predominantly α-helical, even in the presence of Mg2+. Extrinsic fluorescence spectroscopy with ANS indicates the presence of a hydrophobic pocket in the presence of ATP and Mg2+, while mant-ATP studies allude to the potential nucleotide binding ability of KpPrAT. The presence of Mg2+ increases the thermostability of the protein. Isothermal titration calorimetry provides insight into the binding affinity and thermodynamic parameters associated with the binding of ATP to KpPrAT, with or without Mg2+. Conclusively, the presence of Mg2+ induces a conformation in KpPrAT that favours nucleotide binding.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Trifosfato de Adenosina/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/isolamento & purificação , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Magnésio/metabolismo , Magnésio/química , Magnésio/farmacologia
3.
Protein J ; 41(1): 141-156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35083643

RESUMO

Patients in health-care settings develop nosocomial infections due to prolonged hospital stay. The Gram negative Klebsiella pneumoniae (K. pneumoniae), is a bacterial pathogen responsible for most nosocomial infections and are resistant to most current antibiotics. Hence, there is need for identification and validation of potential protein targets for design of new generation antibiotics. One of such targets is nicotinate nucleotide adenylyltransferase, an enzyme responsible for redox metabolism. This study focuses on novel expression, purification, and biophysical characterization of NNAT from K. pneumoniae. KpNNAT was over-expressed in T7 express™ Escherichia coli using the pGEX-4 T-1 expressions system and purified to > 98% homogeneity (~ 20 mg KpNNAT/g of the wet cell) using a combination of glutathione-agarose and immobilized Ni2+ affinity chromatography. KpNNAT indirectly showed "pseudo-specific activity" of 0.30 µmol/min/mg towards ß-nicotinate mononucleotide and ATP using alcohol dehydrogenase as a secondary enzyme (in the presence of ethanol). Far-UV circular dichroism showed a ~ 38% predominantly alpha-helical and 16% ß-strand secondary structural content. The binding of ATP to KpNNAT is entropically-driven with an overall ∆G° of ‒23.8 kJ/mol and dissociation constant of 69.1 µM. Data from this study suggest that KpNNAT can be expressed in E. coli, purified to homogeneity to yield high quantities of active recombinant enzyme for downstream biophysical studies such as X-ray crystallography.


Assuntos
Klebsiella pneumoniae , Nicotinamida-Nucleotídeo Adenililtransferase , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa