Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33382968

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , Células A549 , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus Humano 229E/fisiologia , Infecções por Coronavirus/virologia , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mapeamento de Interação de Proteínas
2.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338421

RESUMO

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Assuntos
Infecções por Flavivirus/genética , Flavivirus/fisiologia , Proteínas de Membrana/metabolismo , Animais , Povo Asiático/genética , Autofagia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Linhagem Celular , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/fisiologia , Replicação Viral , Vírus da Febre Amarela/fisiologia , Zika virus/fisiologia
3.
Cell ; 172(3): 423-438.e25, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249360

RESUMO

Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.


Assuntos
Imunidade Inata , Células-Tronco Pluripotentes/imunologia , Viroses/imunologia , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Pluripotentes/virologia , Especificidade da Espécie
4.
Cell ; 169(4): 597-609.e11, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475892

RESUMO

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Infecção por Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Brasil , Feminino , Humanos , Memória Imunológica , Leucócitos Mononucleares/imunologia , Masculino , México , Camundongos , Infecção por Zika virus/sangue
5.
Proc Natl Acad Sci U S A ; 120(51): e2317367120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096415

RESUMO

Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.


Assuntos
Anticorpos Neutralizantes , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos , Humanos , Anticorpos Antivirais , Testes de Neutralização , Vacinação , Glicoproteína da Espícula de Coronavírus/química
6.
J Virol ; 96(7): e0151621, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297669

RESUMO

ADP-ribosylation is a highly dynamic posttranslational modification frequently studied in stress response pathways with recent attention given to its role in response to viral infection. Notably, the alphaviruses encode catalytically active macrodomains capable of ADP-ribosylhydrolase (ARH) activities, implying a role in remodeling the cellular ADP-ribosylome. This report decouples mono- and poly-ARH contributions to macrodomain function using a newly engineered Sindbis virus (SINV) mutant with attenuated poly-ARH activity. Our findings indicate that viral poly-ARH activity is uniquely required for high titer replication in mammalian systems. Despite translating incoming genomic RNA as efficiently as WT virus, mutant viruses have a reduced capacity to establish productive infection, offering a more complete understanding of the kinetics and role of the alphavirus macrodomain with important implications for broader ADP-ribosyltransferase biology. IMPORTANCE Viral macrodomains have drawn attention in recent years due to their high degree of conservation in several virus families (e.g., coronaviruses and alphaviruses) and their potential druggability. These domains erase mono- or poly-ADP-ribose, posttranslational modifications written by host poly-ADP-ribose polymerase (PARP) proteins, from undetermined host or viral proteins to enhance replication. Prior work determined that efficient alphavirus replication requires catalytically active macrodomains; however, which form of the modification requires removal and from which protein(s) had not been determined. Here, we present evidence for the specific requirement of poly-ARH activity to ensure efficient productive infection and virus replication.


Assuntos
Coronavirus , Hidrolases , RNA Viral , Sindbis virus , Animais , Coronavirus/genética , Hidrolases/metabolismo , Mamíferos/genética , Poli Adenosina Difosfato Ribose/metabolismo , RNA Viral/genética , Sindbis virus/enzimologia , Sindbis virus/genética , Replicação Viral
7.
Proc Natl Acad Sci U S A ; 117(18): 9865-9875, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321830

RESUMO

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Epitopos/imunologia , Células Germinativas/imunologia , Humanos , Recém-Nascido , Domínios Proteicos/imunologia , Vacinas Virais/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/patogenicidade , Zika virus/isolamento & purificação , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
8.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209664

RESUMO

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Feto/imunologia , Feto/virologia , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Engenharia de Proteínas , RNA Viral/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
9.
PLoS Pathog ; 16(9): e1008927, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32997711

RESUMO

Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease.


Assuntos
Cisteína Endopeptidases/metabolismo , Infecções por Enterovirus/virologia , Enterovirus/patogenicidade , Replicação Viral/fisiologia , Antivirais/metabolismo , Enterovirus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteólise , Proteínas Virais/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(48): 24303-24309, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719195

RESUMO

Infection of animal cells by numerous viruses is detected and countered by a variety of means, including recognition of nonself nucleic acids. The zinc finger antiviral protein (ZAP) depletes cytoplasmic RNA that is recognized as foreign in mammalian cells by virtue of its elevated CG dinucleotide content compared with endogenous mRNAs. Here, we determined a crystal structure of a protein-RNA complex containing the N-terminal, 4-zinc finger human (h) ZAP RNA-binding domain (RBD) and a CG dinucleotide-containing RNA target. The structure reveals in molecular detail how hZAP is able to bind selectively to CG-rich RNA. Specifically, the 4 zinc fingers create a basic patch on the hZAP RBD surface. The highly basic second zinc finger contains a pocket that selectively accommodates CG dinucleotide bases. Structure guided mutagenesis, cross-linking immunoprecipitation sequencing assays, and RNA affinity assays show that the structurally defined CG-binding pocket is not required for RNA binding per se in human cells. However, the pocket is a crucial determinant of high-affinity, specific binding to CG dinucleotide-containing RNA. Moreover, variations in RNA-binding specificity among a panel of CG-binding pocket mutants quantitatively predict their selective antiviral activity against a CG-enriched HIV-1 strain. Overall, the hZAP RBD RNA structure provides an atomic-level explanation for how ZAP selectively targets foreign, CG-rich RNA.


Assuntos
Sequência Rica em GC , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Polarização de Fluorescência , Células HEK293 , HIV-1/genética , Humanos , Modelos Moleculares , Mutagênese , Mutação , Domínios Proteicos , RNA Viral/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Dedos de Zinco
11.
PLoS Pathog ; 15(5): e1007798, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31116799

RESUMO

Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP's antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP's localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP's ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread.


Assuntos
Infecções por Alphavirus/prevenção & controle , Antivirais/farmacologia , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/farmacologia , Sindbis virus/patogenicidade , Estresse Fisiológico , Replicação Viral/efeitos dos fármacos , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Antivirais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/virologia , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/virologia , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Tumorais Cultivadas
12.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31118263

RESUMO

Given the unprecedented scale of the recent Ebola and Zika viral epidemics, it is crucial to understand the biology of host factors with broad antiviral action in order to develop novel therapeutic approaches. Here, we look into one such factor: zinc finger antiviral protein (ZAP) inhibits a variety of RNA and DNA viruses. Alternative splicing results in two isoforms that differ at their C termini: ZAPL (long) encodes a poly(ADP-ribose) polymerase (PARP)-like domain that is missing in ZAPS (short). Previously, it has been shown that ZAPL is more antiviral than ZAPS, while the latter is more induced by interferon (IFN). In this study, we discovered and confirmed the expression of two additional splice variants of human ZAP: ZAPXL (extralong) and ZAPM (medium). We also found two haplotypes of human ZAP. Since ZAPL and ZAPS have differential activities, we hypothesize that all four ZAP isoforms have evolved to mediate distinct antiviral and/or cellular functions. By taking a gene-knockout-and-reconstitution approach, we have characterized the antiviral, translational inhibition, and IFN activation activities of individual ZAP isoforms. Our work demonstrates that ZAPL and ZAPXL are more active against alphaviruses and hepatitis B virus (HBV) than ZAPS and ZAPM and elucidates the effects of splice variants on the action of a broad-spectrum antiviral factor.IMPORTANCE ZAP is an IFN-induced host factor that can inhibit a wide range of viruses, and there is great interest in fully characterizing its antiviral mechanism. This is the first study that defines the antiviral capacities of individual ZAP isoforms in the absence of endogenous ZAP expression and, hence, cross talk with other isoforms. Our data demonstrate that ZAP is expressed as four different forms: ZAPS, ZAPM, ZAPL, and ZAPXL. The longer ZAP isoforms better inhibit alphaviruses and HBV, while all isoforms equally inhibit Ebola virus transcription and replication. In addition, there is no difference in the abilities of ZAP isoforms to enhance the induction of type I IFN expression. Our results show that the full spectrum of ZAP activities can change depending on the virus target and the relative levels of basal expression and induction by IFN or infection.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células A549 , Alphavirus/genética , Processamento Alternativo , Linhagem Celular , Células HEK293 , Haplótipos , Células HeLa , Vírus da Hepatite B/genética , Humanos , Isoformas de Proteínas , Splicing de RNA/genética , RNA Viral/genética , Replicação Viral/efeitos dos fármacos , Dedos de Zinco
13.
PLoS Pathog ; 13(1): e1006145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060952

RESUMO

The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP's antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP's ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity.


Assuntos
Infecções por Alphavirus/prevenção & controle , Antivirais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sindbis virus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Cricetinae , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
Hepatology ; 66(2): 357-370, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27642141

RESUMO

Hepatitis C virus (HCV) is unique among RNA viruses in its ability to establish chronic infection in the majority of exposed adults. HCV persists in the liver despite interferon (IFN)-stimulated gene (ISG) induction; robust induction actually predicts treatment failure and viral persistence. It is unclear which forms of HCV RNA are associated with ISG induction and IFN resistance during natural infections. To thoroughly delineate HCV RNA populations, we developed conditions that fully separate the strands of long double-stranded RNA (dsRNA) and allow the released RNAs to be quantified in reverse transcription/polymerase chain reaction assays. These methods revealed that dsRNA, a pathogen-associated molecular pattern (PAMP), comprised 52% (standard deviation, 28%) of the HCV RNA in the livers of patients with chronic infection. HCV dsRNA was proportionally higher in patients with the unfavorable IL28B TT (rs12979860) genotype. Higher ratios of HCV double-stranded to single-stranded RNA (ssRNA) correlated positively with ISG induction. In Huh-7.5 cells, IFN treatment increased the total amount of HCV dsRNA through a process that required de novo viral RNA synthesis and shifted the ratio of viral dsRNA/ssRNA in favor of dsRNA. This shift was blocked by ribavirin (RBV), an antiviral drug that reduces relapse in HCV patients. Northern blotting established that HCV dsRNA contained genome-length minus strands. CONCLUSION: HCV dsRNA is the predominant form in the HCV-infected liver and has features of both a PAMP and a genomic reservoir. Interferon treatment increased rather than decreased HCV dsRNA. This unexpected finding suggests that HCV produces dsRNA in response to IFN, potentially to antagonize antiviral defenses. (Hepatology 2017;66:357-370).


Assuntos
Antivirais/farmacologia , Hepacivirus/genética , Hepatite C/patologia , Interferon-alfa/farmacologia , RNA de Cadeia Dupla/genética , Adulto , Biópsia por Agulha , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , RNA de Cadeia Dupla/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , RNA Viral/genética , Valores de Referência , Sensibilidade e Especificidade
15.
J Virol ; 90(6): 3212-28, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739057

RESUMO

UNLABELLED: DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE: Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development.


Assuntos
Proteínas Fetais/metabolismo , Interações Hospedeiro-Patógeno , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Vírus da Febre Amarela/fisiologia , Linhagem Celular , Humanos , Proteólise
16.
J Virol ; 90(22): 10247-10258, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27581990

RESUMO

Viral infection induces production of type I interferons (IFNs), which stimulate the expression of a variety of antiviral factors to inhibit viral replication. To establish effective infection, viruses need to develop strategies to evade the immune responses. A neurovirulent Sindbis virus strain with neuroinvasive properties (SVNI) causes lethal encephalitis in mice, and its replication in cultured cells is inhibited by the zinc finger antiviral protein (ZAP), a host factor that specifically inhibits the replication of certain viruses by binding to the viral mRNAs, repressing the translation of target mRNA, and promoting the degradation of target mRNA. We report here that murine embryonic fibroblast cells from ZAP knockout mice supported more efficient SVNI replication than wild-type cells. SVNI infection of 10-day-old suckling mice led to reduced survival in the knockout mice. Unexpectedly, however, SVNI infection of 23-day-old weanling mice, whose immune system is more developed than that of the suckling mice, resulted in significantly improved survival in ZAP knockout mice. Further analyses revealed that in the weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of IFN production, which restricted viral spread to the central nervous system. Blocking IFN activity through the use of receptor-neutralizing antibodies rendered knockout mice more sensitive to SVNI infection than wild-type mice. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance. IMPORTANCE: Sindbis virus, a prototypic member of the Alphavirus genus, has been used to study the pathogenesis of acute viral encephalitis in mice for many years. How the virus evades immune surveillance to establish effective infection is largely unknown. ZAP is a host antiviral factor that potently inhibits Sindbis virus replication in cell culture. We show here that infection of ZAP knockout suckling mice with an SVNI led to faster disease progression. However, SVNI infection of weanling mice led to slower disease progression in knockout mice. Further analyses revealed that in weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of interferon production, which restricted viral spread to the central nervous system. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance and allow enhanced neuroinvasion.


Assuntos
Infecções por Alphavirus/imunologia , Antivirais/imunologia , Sindbis virus/imunologia , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Cricetinae , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/imunologia , Replicação Viral/imunologia
17.
Proc Natl Acad Sci U S A ; 110(27): 11085-90, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776219

RESUMO

S-prenylation is an important lipid modification that targets proteins to membranes for cell signaling and vesicle trafficking in eukaryotes. As S-prenylated proteins are often key effectors for oncogenesis, congenital disorders, and microbial pathogenesis, robust proteomic methods are still needed to biochemically characterize these lipidated proteins in specific cell types and disease states. Here, we report that bioorthogonal proteomics of macrophages with an improved alkyne-isoprenoid chemical reporter enables large-scale profiling of prenylated proteins, as well as the discovery of unannotated lipidated proteins such as isoform-specific S-farnesylation of zinc-finger antiviral protein (ZAP). Notably, S-farnesylation was crucial for targeting the long-isoform of ZAP (ZAPL/PARP-13.1/zc3hav1) to endolysosomes and enhancing the antiviral activity of this immune effector. These studies demonstrate the utility of isoprenoid chemical reporters for proteomic analysis of prenylated proteins and reveal a role for protein prenylation in host defense against viral infections.


Assuntos
Prenilação de Proteína , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Lipoproteínas/química , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Dados de Sequência Molecular , Prenilação/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Ratos , Homologia de Sequência de Aminoácidos , Viroses/metabolismo , Viroses/prevenção & controle
18.
J Virol ; 88(19): 11022-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031347

RESUMO

UNLABELLED: Hepatitis C virus (HCV) is a widespread human pathogen causing liver cirrhosis and cancer. Similar to the case for other viruses, HCV depends on host and viral factors to complete its life cycle. We used proteomic and yeast two-hybrid approaches to elucidate host factors involved in HCV nonstructural protein NS5A function and found that MOBKL1B interacts with NS5A. Initial experiments with small interfering RNA (siRNA) knockdown suggesting a role in HCV replication led us to examine the interaction using biochemical and structural approaches. As revealed by a cocrystal structure of a core MOBKL1B-NS5A peptide complex at 1.95 Å, NS5A binds to a hydrophobic patch on the MOBKL1B surface. Biosensor binding assays identified a highly conserved, 18-amino-acid binding site in domain II of NS5A, which encompasses residues implicated in cyclophilin A (CypA)-dependent HCV RNA replication. However, a CypA-independent HCV variant had reduced replication in MOBKL1B knockdown cells, even though its NS5A does not interact with MOBKL1B. These discordant results prompted more extensive studies of MOBKL1B gene knockdowns, which included additional siRNAs and specifically matched seed sequence siRNA controls. We found that reduced virus replication after treating cells with MOBKL1B siRNA was actually due to off-target inhibition, which indicated that the initial finding of virus replication dependence on the MOBKL1B-NS5A interaction was incorrect. Ultimately, using several approaches, we found no relationship of the MOBKL1B-NS5A interaction to virus replication. These findings collectively serve as a reminder to investigators and scientific reviewers of the pervasive impact of siRNA off-target effects on interpretation of biological data. IMPORTANCE: Our study illustrates an underappreciated shortcoming of siRNA gene knockdown technology. We initially identified a cellular protein, MOBKL1B, as a binding partner with the NS5A protein of hepatitis C virus (HCV). MOBKL1B siRNA, but not irrelevant RNA, treatment was associated with both reduced virus replication and the absence of MOBKL1B. Believing that HCV replication depended on the MOBKL1B-NS5A interaction, we carried out structural and biochemical analyses. Unexpectedly, an HCV variant lacking the MOBKL1B-NS5A interaction could not replicate after cells were treated with MOBKL1B siRNA. By repeating the MOBKL1B siRNA knockdowns and including seed sequence-matched siRNA instead of irrelevant siRNA as a control, we found that the MOBKL1B siRNAs utilized had off-target inhibitory effects on virus replication. Collectively, our results suggest that stricter controls must be utilized in all RNA interference (RNAi)-mediated gene knockdown experiments to ensure sound conclusions and a reliable scientific knowledge database.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artefatos , Hepacivirus/metabolismo , Hepatócitos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Hepacivirus/genética , Hepatócitos/citologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas não Estruturais Virais/genética
19.
Vector Borne Zoonotic Dis ; 24(4): 226-236, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436222

RESUMO

Introduction: Lyme disease (LD) affects ∼476,000 people each year in the United States. Symptoms are variable and include rash and flu-like symptoms. Reasons for the wide variation in disease outcomes are unknown. Powassan virus (POWV) is a tick-borne flavivirus that causes disease ranging from asymptomatic infection to encephalitis, neurologic damage, and death. POWV and LD geographic case distributions overlap, with Ixodes species ticks as the common vectors. Clinical ramifications of coinfection or sequential infection are unknown. Objectives: This study's primary objective was to determine the prevalence of POWV-reactive antibodies in sera samples collected from previously studied cohorts of individuals with self-reported LD history residing in the Northeastern United States. As a secondary objective, we studied clinical differences between people with self-reported LD history and low versus high POWV antibody levels. Methods: We used an enzyme-linked immunosorbent assay (ELISA) to quantify IgG directed at the POWV envelope (E) protein domain III in 538 samples from individuals with self-reported LD history and 16 community controls. The samples were also tested with an ELISA assay to quantify IgG directed at the POWV NS1 protein. Results: The percentage of individuals with LD history and possible evidence of POWV exposure varied depending on the assay utilized. We found no significant difference in clinical symptoms between those with low or high POWV IgG levels in the in-house assay. Congruence of the EDIII and NS1 assays was low with only 12% of those positive in the in-house EDIII ELISA testing positive in the POWV NS1 ELISA. Conclusions: The results highlight the difficulty in flavivirus diagnostic testing, particularly in the retrospective detection of flavivirus exposure. The findings suggest that a prospective study with symptomatic patients using approved clinical testing is necessary to address the incidence and clinical implications of LD and POWV co-infection or sequential infection.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Doença de Lyme , Animais , Humanos , Estados Unidos/epidemiologia , Prevalência , Estudos Retrospectivos , Estudos Prospectivos , Encefalite Transmitida por Carrapatos/veterinária , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , New England/epidemiologia , Anticorpos Antivirais , Imunoglobulina G
20.
Cell Rep ; 43(6): 114298, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38819991

RESUMO

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.


Assuntos
Anticorpos Neutralizantes , Humanos , Brasil , Anticorpos Neutralizantes/imunologia , México , Anticorpos Antivirais/imunologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Flavivirus/imunologia , Epitopos/imunologia , Anticorpos Monoclonais/imunologia , Carrapatos/virologia , Carrapatos/imunologia , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa