Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurochem ; 154(6): 635-646, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31784978

RESUMO

Short-chain fatty acids (SCFAs) are a group of fatty acids predominantly produced during the fermentation of dietary fibers by the gut anaerobic microbiota. SCFAs affect many host processes in health and disease. SCFAs play an important role in the 'gut-brain axis', regulating central nervous system processes, for example, cell-cell interaction, neurotransmitter synthesis and release, microglia activation, mitochondrial function, and gene expression. SCFAs also promote the growth of neurospheres from human neural stem cells and the differentiation of embryonic stem cells into neural cells. It is plausible that maternally derived SCFAs may pass the placenta and expose the fetus at key developmental periods. However, it is unclear how SCFA exposure at physiological levels influence the early-stage neural cells. In this study, we explored the effect of SCFAs on the growth rate of human neural progenitor cells (hNPCs), generated from human embryonic stem cell line (HS980), with IncuCyte live-cell analysis system and immunofluorescence. We found that physiologically relevant levels (µM) of SCFAs (acetate, propionate, butyrate) increased the growth rate of hNPCs significantly and induced more cells to undergo mitosis, while high levels (mM) of SCFAs had toxic effects on hNPCs. Moreover, no effect on apoptosis was observed in physiological-dose SCFA treatments. In support, data from q-RT PCR showed that SCFA treatments influenced the expression of the neurogenesis, proliferation, and apoptosis-related genes ATR, BCL2, BID, CASP8, CDK2, E2F1, FAS, NDN, and VEGFA. To conclude, our results propose that SCFAs regulates early neural system development. This might be relevant for a putative 'maternal gut-fetal brain-axis'. Cover Image for this issue: doi: 10.1111/jnc.14761.


Assuntos
Ácidos Graxos Voláteis/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Microbioma Gastrointestinal , Humanos , Neurogênese/efeitos dos fármacos , Neurogênese/genética
2.
Dev Psychobiol ; 61(5): 688-699, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30689218

RESUMO

The role of the gut microbiome and its enteric metabolites, such as short-chain fatty acids (SCFAs), in the etiology of autism spectrum disorders (ASDs) has recently received increased attention. Of particular interest has been the SCFA, propionic acid (PPA). Several different rodent models have been developed using PPA treatment to examine behaviors of relevance to ASD. The effects of systemic (intraperitoneal, i.p.) administration of PPA on social behavior, anxiety-related behavior, and locomotor activity in juvenile male rats (age 35 days) were examined in this study. Rats received seven i.p. injections of buffered PPA (500 mg/kg) or phosphate-buffered saline. Behavior was video-recorded during social interaction in a large open field (first four injections) or assessed in an automated activity system (individual animals, last three injections). PPA treatment significantly reduced social interaction, increased anxiety-related behavior, and produced hypoactivity and increased abnormal motor movements. These findings suggest that PPA alters behaviors of relevance to ASD in juvenile rats. These results contribute to the behavioral validity of the rodent model of ASD with systemic PPA treatment.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal/efeitos dos fármacos , Propionatos/farmacologia , Comportamento Social , Animais , Ansiedade , Modelos Animais de Doenças , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans
3.
Microb Ecol Health Dis ; 26: 28177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26031685

RESUMO

Clinical observations suggest that gut and dietary factors transiently worsen and, in some cases, appear to improve behavioral symptoms in a subset of persons with autism spectrum disorders (ASDs), but the reason for this is unclear. Emerging evidence suggests ASDs are a family of systemic disorders of altered immunity, metabolism, and gene expression. Pre- or perinatal infection, hospitalization, or early antibiotic exposure, which may alter gut microbiota, have been suggested as potential risk factors for ASD. Can a common environmental agent link these disparate findings? This review outlines basic science and clinical evidence that enteric short-chain fatty acids (SCFAs), present in diet and also produced by opportunistic gut bacteria following fermentation of dietary carbohydrates, may be environmental triggers in ASD. Of note, propionic acid, a major SCFA produced by ASD-associated gastrointestinal bacteria (clostridia, bacteroides, desulfovibrio) and also a common food preservative, can produce reversible behavioral, electrographic, neuroinflammatory, metabolic, and epigenetic changes closely resembling those found in ASD when administered to rodents. Major effects of these SCFAs may be through the alteration of mitochondrial function via the citric acid cycle and carnitine metabolism, or the epigenetic modulation of ASD-associated genes, which may be useful clinical biomarkers. It discusses the hypothesis that ASDs are produced by pre- or post-natal alterations in intestinal microbiota in sensitive sub-populations, which may have major implications in ASD cause, diagnosis, prevention, and treatment.

4.
Microb Ecol Health Dis ; 26: 27458, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956238

RESUMO

Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut-brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction.

5.
Microb Ecol Health Dis ; 26: 26878, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956237

RESUMO

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.

6.
Front Microbiol ; 14: 1133773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032884

RESUMO

Nanometric scale size oscillations seem to be a fundamental feature of all living organisms on Earth. Their detection usually requires complex and very sensitive devices. However, some recent studies demonstrated that very simple optical microscopes and dedicated image processing software can also fulfill this task. This novel technique, termed as optical nanomotion detection (ONMD), was recently successfully used on yeast cells to conduct rapid antifungal sensitivity tests. In this study, we demonstrate that the ONMD method can monitor motile sub-cellular organelles, such as mitochondria. Here, mitochondrial isolates (from HEK 293 T and Jurkat cells) undergo predictable motility when viewed by ONMD and triggered by mitochondrial toxins, citric acid intermediates, and dietary and bacterial fermentation products (short-chain fatty acids) at various doses and durations. The technique has superior advantages compared to classical methods since it is rapid, possesses a single organelle sensitivity, and is label- and attachment-free.

7.
J Neuroinflammation ; 9: 153, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747852

RESUMO

Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.


Assuntos
Encéfalo/metabolismo , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Modelos Animais de Doenças , Enterobacteriaceae , Fosfolipídeos/sangue , Propionatos/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/induzido quimicamente , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Enterobacteriaceae/metabolismo , Humanos , Infusões Intraventriculares , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Propionatos/administração & dosagem , Ratos , Ratos Long-Evans
8.
Artigo em Inglês | MEDLINE | ID: mdl-23990817

RESUMO

Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental agents that can trigger ASDs or ASD-related behaviors and deserve further exploration in basic science, agriculture, and clinical medicine.

9.
Behav Brain Res ; 403: 113140, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33508348

RESUMO

Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.


Assuntos
Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Propionatos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Infusões Intraventriculares , Masculino , Propionatos/administração & dosagem , Ratos , Ratos Long-Evans
10.
J Neurochem ; 113(2): 515-29, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20405543

RESUMO

Recent studies have demonstrated intraventricular infusions of propionic acid (PPA) a dietary and enteric short-chain fatty acid can produce brain and behavioral changes similar to those observed in autism spectrum disorder (ASD). The effects of PPA were further evaluated to determine if there are any alterations in brain lipids associated with the ASD-like behavioral changes observed following intermittent intraventricular infusions of PPA, the related enteric metabolite butyric acid (BUT) or phosphate-buffered saline vehicle. Both PPA and BUT produced significant increases (p < 0.001) in locomotor activity (total distance travelled and stereotypy). PPA and to a lesser extent BUT infusions decreased the levels of total monounsaturates, total omega6 fatty acids, total phosphatidylethanolamine plasmalogens, the ratio of omega6 : omega3 and elevated the levels of total saturates in separated phospholipid species. In addition, total acylcarnitines, total longchain (C12-C24) acylcarnitines, total short-chain (C2 to C9) acylcarnitines, and the ratio of bound to free carnitine were increased following infusions with PPA and BUT. These results provide evidence of a relationship between changes in brain lipid profiles and the occurrence of ASD-like behaviors using the autism rodent model. We propose that altered brain fatty acid metabolism may contribute to ASD.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carnitina/análogos & derivados , Fosfolipídeos/metabolismo , Propionatos/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Carnitina/metabolismo , Criança , Transtornos Globais do Desenvolvimento Infantil , Cromatografia em Camada Fina/métodos , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Injeções Intraventriculares/métodos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Espectrometria de Massas por Ionização por Electrospray/métodos , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31639413

RESUMO

Autism spectrum disorders (ASD) are a set of neurodevelopmental disorders characterized by abnormal social interactions, impaired language, and stereotypic and repetitive behaviours. Among genetically susceptible subpopulations, gut and dietary influences may play a role in etiology. Propionic acid (PPA), produced by enteric gut bacteria, crosses both the gut-blood and the blood-brain barrier. Previous research has demonstrated that repeated intracerebroventricular (ICV) infusions of PPA in adult rats produce behavioural and neuropathological changes similar to those seen in ASD patients, including hyperactivity, stereotypy, and repetitive movements. The current study examined dose and time related changes of exploratory and repetitive behaviours with the use of the hole-board task. Adult male Long-Evans rats received ICV infusions twice a day, 4 h apart, of either buffered PPA (low dose 0.052 M or high dose 0.26 M, pH 7.5, 4 µL/infusion) or phosphate buffered saline (PBS, 0.1 M) for 7 consecutive days. Locomotor activity and hole-poke behaviour were recorded daily in an automated open field apparatus (Versamax), equipped with 16 open wells, for 30 min immediately after the second infusion. In a dose dependent manner PPA infused rats displayed significantly more locomotor activity, stereotypic behaviour and nose-pokes than PBS infused rats. Low-dose PPA animals showed locomotor activity levels similar to those of PBS animals at the start of the infusion schedule, but gradually increased to levels comparable to those of high-dose PPA animals by the end of the infusion schedule, demonstrating a dose and time dependent effect of the PPA treatments.


Assuntos
Transtorno do Espectro Autista/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Propionatos/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Masculino , Propionatos/administração & dosagem , Ratos , Fatores de Tempo
12.
Neurotox Res ; 35(4): 823-837, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30848474

RESUMO

Propionic acid (PPA) is a dietary short chain fatty acid and an enteric bacterial metabolite. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioral changes similar to those seen in autism spectrum disorders (ASD), including perseveration. The effects of ICV infusions of PPA on spatial cognition were examined by giving rats infusions of either PPA (0.26 M, pH 7.4, 4 µl/infusion) or phosphate-buffered saline (PBS, 0.1 M) twice a day for 7 days. The rats were then tested in the Morris water maze (MWM) for acquisition of spatial learning. After a recovery period of 1 week of no treatment, the rats were then tested for reversal of spatial learning in the MWM. PPA-treated rats showed impaired spatial learning in the maze, relative to controls, as demonstrated by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. After a recovery period of 1 week of no treatment, these animals exhibited normal spatial reversal learning indicating that the behavioral cognitive deficits caused by PPA seem to be reversible.


Assuntos
Transtorno do Espectro Autista/psicologia , Modelos Animais de Doenças , Propionatos/administração & dosagem , Aprendizagem Espacial/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/microbiologia , Comportamento Animal/efeitos dos fármacos , Microbioma Gastrointestinal , Infusões Intraventriculares , Masculino , Atividade Motora , Ratos Long-Evans
13.
Neuropharmacology ; 54(6): 901-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18395759

RESUMO

Environmental, dietary, and gastrointestinal factors may contribute to autism spectrum disorders (ASD). Propionic acid (PPA) is a short chain fatty acid, a metabolic end-product of enteric bacteria in the gut, and a common food preservative. Recent evidence indicates that PPA can cause behavioral abnormalities and a neuroinflammatory response in rats. Social behavior was examined in similarly-treated pairs of adult male Long-Evans rats placed in an open field following intracerebroventricular (ICV) injection of PPA (4 microl of 0.26 M solution) or control compounds. Behavior was analyzed using both the EthoVision behavior tracking system and by blind scoring of videotapes of social behaviors. Compared to controls, rats treated with PPA displayed social behavior impairments as indicated by significantly greater mean distance apart, reduced time spent in close proximity, reduced playful interaction, and altered responses to playful initiations. Treatment with another short chain fatty acid, sodium acetate, produced similar impairments, but treatment with the alcohol analog of PPA, 1-propanol, did not produce impairments. Immunohistochemical analysis of brain tissue taken from rats treated with PPA revealed reactive astrogliosis, indicating a neuroinflammatory response. These findings suggest that PPA can change both brain and behavior in the laboratory rat in a manner that is consistent with symptoms of human ASD.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/psicologia , Enterobacteriaceae/metabolismo , Propionatos/farmacologia , Comportamento Social , 1-Propanol/farmacologia , Ácido Acético/farmacologia , Agressão/efeitos dos fármacos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Injeções Intraventriculares , Luz , Masculino , Atividade Motora/fisiologia , Jogos e Brinquedos/psicologia , Propionatos/administração & dosagem , Ratos , Ratos Long-Evans
14.
Transl Psychiatry ; 8(1): 42, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29391397

RESUMO

Butyrate (BT) is a ubiquitous short-chain fatty acid (SCFA) principally derived from the enteric microbiome. BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant. BT and other SCFAs have also been associated with autism spectrum disorders (ASD), a condition associated with mitochondrial dysfunction. We have developed a lymphoblastoid cell line (LCL) model of ASD, with a subset of LCLs demonstrating mitochondrial dysfunction (AD-A) and another subset of LCLs demonstrating normal mitochondrial function (AD-N). Given the positive modulation of BT on mitochondrial function, we hypothesized that BT would have a preferential positive effect on AD-A LCLs. To this end, we measured mitochondrial function in ASD and age-matched control (CNT) LCLs, all derived from boys, following 24 and 48 h exposure to BT (0, 0.1, 0.5, and 1 mM) both with and without an in vitro increase in reactive oxygen species (ROS). We also examined the expression of key genes involved in cellular and mitochondrial response to stress. In CNT LCLs, respiratory parameters linked to adenosine triphosphate (ATP) production were attenuated by 1 mM BT. In contrast, BT significantly increased respiratory parameters linked to ATP production in AD-A LCLs but not in AD-N LCLs. In the context of ROS exposure, BT increased respiratory parameters linked to ATP production for all groups. BT was found to modulate individual LCL mitochondrial respiration to a common set-point, with this set-point slightly higher for the AD-A LCLs as compared to the other groups. The highest concentration of BT (1 mM) increased the expression of genes involved in mitochondrial fission (PINK1, DRP1, FIS1) and physiological stress (UCP2, mTOR, HIF1α, PGC1α) as well as genes thought to be linked to cognition and behavior (CREB1, CamKinase II). These data show that the enteric microbiome-derived SCFA BT modulates mitochondrial activity, with this modulation dependent on concentration, microenvironment redox state, and the underlying mitochondrial function of the cell. In general, these data suggest that BT can enhance mitochondrial function in the context of physiological stress and/or mitochondrial dysfunction, and may be an important metabolite that can help rescue energy metabolism during disease states. Thus, insight into this metabolic modulator may have wide applications for both health and disease since BT has been implicated in a wide variety of conditions including ASD. However, future clinical studies in humans are needed to help define the practical implications of these physiological findings.


Assuntos
Transtorno do Espectro Autista/metabolismo , Butiratos/metabolismo , Butiratos/farmacologia , Microbioma Gastrointestinal , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Criança , Humanos , Masculino
15.
Behav Brain Res ; 176(1): 149-69, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16950524

RESUMO

Clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism spectrum disorders (ASD), epilepsy and some inheritable metabolic disorders. Propionic acid (PPA) is a short chain fatty acid and an important intermediate of cellular metabolism. PPA is also a by-product of a subpopulation of human gut enterobacteria and is a common food preservative. We examined the behavioural, electrophysiological, neuropathological, and biochemical effects of treatment with PPA and related compounds in adult rats. Intraventricular infusions of PPA produced reversible repetitive dystonic behaviours, hyperactivity, turning behaviour, retropulsion, caudate spiking, and the progressive development of limbic kindled seizures, suggesting that this compound has central effects. Biochemical analyses of brain homogenates from PPA treated rats showed an increase in oxidative stress markers (e.g., lipid peroxidation and protein carbonylation) and glutathione S-transferase activity coupled with a decrease in glutathione and glutathione peroxidase activity. Neurohistological examinations of hippocampus and adjacent white matter (external capsule) of PPA treated rats revealed increased reactive astrogliosis (GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) suggestive of a neuroinflammatory process. This was coupled with a lack of cytotoxicity (cell counts, cleaved caspase 3' immunoreactivity), and an increase in phosphorylated CREB immunoreactivity. We propose that some types of autism may be partial forms of genetically inherited or acquired disorders involving altered PPA metabolism. Thus, intraventricular administration of PPA in rats may provide a means to model some aspects of human ASD in rats.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Comportamento Exploratório , Ácidos Graxos Voláteis/metabolismo , Propionatos/metabolismo , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/toxicidade , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Injeções Intraventriculares , Excitação Neurológica/patologia , Masculino , Atividade Motora , Neocórtex/metabolismo , Neocórtex/fisiopatologia , Neostriado/metabolismo , Neostriado/patologia , Neostriado/fisiopatologia , Estresse Oxidativo , Propionatos/administração & dosagem , Propionatos/toxicidade , Distribuição Aleatória , Ratos , Ratos Long-Evans
16.
Front Immunol ; 8: 1670, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312285

RESUMO

Propionic acid (PPA) is a ubiquitous short-chain fatty acid which is a fermentation product of the enteric microbiome and present or added to many foods. While PPA has beneficial effects, it is also associated with human disorders, including autism spectrum disorders (ASDs). We previously demonstrated that PPA modulates mitochondrial dysfunction differentially in subsets of lymphoblastoid cell lines (LCLs) derived from patients with ASD. Specifically, PPA significantly increases mitochondrial function in LCLs that have mitochondrial dysfunction at baseline [individuals with autistic disorder with atypical mitochondrial function (AD-A) LCLs] as compared to ASD LCLs with normal mitochondrial function [individuals with autistic disorder with normal mitochondrial function (AD-N) LCLs] and control (CNT) LCLs. PPA at 1 mM was found to have a minimal effect on expression of immune genes in CNT and AD-N LCLs. However, as hypothesized, Panther analysis demonstrated that 1 mM PPA exposure at 24 or 48 h resulted in significant activation of the immune system genes in AD-A LCLs. When the effect of PPA on ASD LCLs were compared to the CNT LCLs, both ASD groups demonstrated immune pathway activation, although the AD-A LCLs demonstrate a wider activation of immune genes. Ingenuity Pathway Analysis identified several immune-related pathways as key Canonical Pathways that were differentially regulated, specifically human leukocyte antigen expression and immunoglobulin production genes were upregulated. These data demonstrate that the enteric microbiome metabolite PPA can evoke atypical immune activation in LCLs with an underlying abnormal metabolic state. As PPA, as well as enteric bacteria which produce PPA, have been implicated in a wide variety of diseases which have components of immune dysfunction, including ASD, diabetes, obesity, and inflammatory diseases, insight into this metabolic modulator may have wide applications for both health and disease.

17.
Clin Med Insights Pediatr ; 10: 91-107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774001

RESUMO

Recent studies have highlighted the fact that the enteric microbiome, the trillions of microbes that inhabit the human digestive tract, has a significant effect on health and disease. Methods for manipulating the enteric microbiome, particularly through probiotics and microbial ecosystem transplantation, have undergone some study in clinical trials. We review some of the evidence for microbiome alteration in relation to childhood disease and discuss the clinical trials that have examined the manipulation of the microbiome in an effort to prevent or treat childhood disease with a primary focus on probiotics, prebiotics, and/or synbiotics (ie, probiotics + prebiotics). Studies show that alterations in the microbiome may be a consequence of events occurring during infancy and/or childhood such as prematurity, C-sections, and nosocomial infections. In addition, certain childhood diseases have been associated with microbiome alterations, namely necrotizing enterocolitis, infantile colic, asthma, atopic disease, gastrointestinal disease, diabetes, malnutrition, mood/anxiety disorders, and autism spectrum disorders. Treatment studies suggest that probiotics are potentially protective against the development of some of these diseases. Timing and duration of treatment, the optimal probiotic strain(s), and factors that may alter the composition and function of the microbiome are still in need of further research. Other treatments such as prebiotics, fecal microbial transplantation, and antibiotics have limited evidence. Future translational work, in vitro models, long-term and follow-up studies, and guidelines for the composition and viability of probiotic and microbial therapies need to be developed. Overall, there is promising evidence that manipulating the microbiome with probiotics early in life can help prevent or reduce the severity of some childhood diseases, but further research is needed to elucidate biological mechanisms and determine optimal treatments.

18.
Curr Pharm Des ; 22(40): 6107-6121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27592717

RESUMO

BACKGROUND: Many lines of scientific research suggest that Autism Spectrum Disorders (ASDs) may be associated with alterations in the enteric ecosystem, including alterations of the enteric macrobiome (i.e. helminthes and fauna) and changes in predominant microbiome species, particularly a reduction in microbiome species diversity. METHODS: We performed a comprehensive review of the literature and summarized the major findings. RESULTS: Alterations in the enteric ecosystem are believed to be due to a variety of factors including changes in the post-industrial society related to decreased exposure to symbiotic organisms, increased human migration, overuse of antibiotics and changes in dietary habits. Changes in the enteric ecosystem are believed to alter metabolic and immune system function and epigenetic regulation. If these changes occur during critical developmental windows, the trajectory of brain development, as well as brain function, can be altered. This paper reviews theoretical models that explain how these perturbations may in isolation or in combination be causative for ASDs as well as the preclinical and clinical studies that support these models. We discuss how these alterations may converge to trigger or exacerbate the formation of an ASD phenotype. We focus on possible preconception, prenatal, perinatal and postnatal factors that may alter the enteric ecosystem leading to physiological disruptions, potentially through triggering events. CONCLUSION: If these theoretical models prove to be valid, they may lead to the development of practical interventions which could decrease ASD prevalence and/or morbidity.


Assuntos
Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Microbiota/imunologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Humanos
19.
Behav Brain Res ; 278: 244-56, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300465

RESUMO

Potential environmental risk factors for autism spectrum disorders (ASD) include viral/bacterial infection and an altered microbiome composition. The present study investigated whether administration of immune and gastrointestinal factors during gestation and early life altered startle response and prepulse inhibition in adolescent offspring using lipopolysaccharide (LPS), a bacterial mimetic, and propionic acid (PPA), a short chain fatty acid and metabolic product of antibiotic resistant enteric bacteria. Pregnant Long-Evans rats were injected once a day with PPA (500 mg/kg SC) on G12-16, LPS (50 µg/kg SC) on G15 and G16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg SC) or vehicle twice a day, every second day from postnatal days 10-18. Acoustic startle and prepulse inhibition was measured on postnatal days 45, 47, 49, and 51. Prenatal and postnatal treatments altered startle behavior in a sex-specific manner. Prenatal LPS treatment produced hyper-sensitivity to acoustic startle in males, but not females and did not alter prepulse inhibition. Subtle alterations in startle responses that disappeared with repeated trials occurred with prenatal PPA and postnatal PPA treatment in both male and female offspring. Prenatal PPA treatment decreased prepulse inhibition in females, but not males. Lastly, females receiving a double hit of PPA, prenatal and postnatal, showed sensitization to acoustic startle, providing evidence for the double hit hypothesis. The current study supports the hypotheses that immune activation and metabolic products of enteric bacteria may alter development and behavior in ways that resemble sensory abnormalities observed in ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/psicologia , Lipopolissacarídeos/farmacologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Inibição Pré-Pulso/efeitos dos fármacos , Propionatos/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Fatores Etários , Animais , Percepção Auditiva/efeitos dos fármacos , Transtornos Globais do Desenvolvimento Infantil/induzido quimicamente , Feminino , Lipopolissacarídeos/administração & dosagem , Masculino , Gravidez , Propionatos/administração & dosagem , Ratos , Ratos Long-Evans , Fatores de Risco , Fatores Sexuais , Fatores de Tempo
20.
Behav Brain Res ; 278: 542-8, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446754

RESUMO

Autism is a complex neurodevelopmental disorder that is characterized by social abnormalities. Genetic, dietary and gut-related factors are implicated in autism, however the causal properties of these factors and how they may interact are unclear. Propionic acid (PPA) is a product of gut microbiota and a food preservative. PPA has been linked to autism, and PPA administration to rats is an animal model of the condition. Seizure-prone (FAST) and seizure-resistant (SLOW) rats were initially developed to investigate differential vulnerability to developing epilepsy. However, FAST rats also display autistic-like features, and have been proposed as a genetic model of autism. Here we examined the effects of PPA on social behavior in FAST and SLOW rats. A single intracerebroventricular injection of PPA, or phosphate-buffered saline (PBS), was administered to young-adult male FAST and SLOW rats. Immediately after treatment, rats were placed in same-treatment and same-strain pairs, and underwent social behavior testing. PPA induced social abnormalities in both FAST and SLOW rat strains. While there was no evidence of social impairment in FAST rats that were not treated with PPA, these rats were hyperactive relative to SLOW rats. Post-mortem immunofluorescence analysis of brain tissue indicated that PPA treatment resulted in increased astrogliosis in the corpus callosum and cortex compared to PBS treatment. FAST rats had increased astrogliosis in the cortex compared to SLOW rats. Together these findings support the use of PPA as a rat model of autism, but indicate there are no interactive effects between the PPA and FAST models.


Assuntos
Propionatos/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Transtornos do Comportamento Social/induzido quimicamente , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Injeções Intraventriculares , Locomoção/efeitos dos fármacos , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa