Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2302069120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824524

RESUMO

Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.


Assuntos
Vírus de RNA , Ácido Salicílico , Animais , Interferência de RNA , Vírus de RNA/genética , Células-Tronco/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , Mamíferos/genética
2.
New Phytol ; 241(5): 2275-2286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327027

RESUMO

Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.


Assuntos
Hexanóis , Nematoides , Vírus de Plantas , Animais , Solo , Vírus de Plantas/genética
3.
New Phytol ; 235(5): 1884-1899, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612785

RESUMO

Strigolactones (SLs) are rhizosphere signalling molecules and phytohormones. The biosynthetic pathway of SLs in tomato has been partially elucidated, but the structural diversity in tomato SLs predicts that additional biosynthetic steps are required. Here, root RNA-seq data and co-expression analysis were used for SL biosynthetic gene discovery. This strategy resulted in a candidate gene list containing several cytochrome P450s. Heterologous expression in Nicotiana benthamiana and yeast showed that one of these, CYP712G1, can catalyse the double oxidation of orobanchol, resulting in the formation of three didehydro-orobanchol (DDH) isomers. Virus-induced gene silencing and heterologous expression in yeast showed that one of these DDH isomers is converted to solanacol, one of the most abundant SLs in tomato root exudate. Protein modelling and substrate docking analysis suggest that hydroxy-orbanchol is the likely intermediate in the conversion from orobanchol to the DDH isomers. Phylogenetic analysis demonstrated the occurrence of CYP712G1 homologues in the Eudicots only, which fits with the reports on DDH isomers in that clade. Protein modelling and orobanchol docking of the putative tobacco CYP712G1 homologue suggest that it can convert orobanchol to similar DDH isomers as tomato.


Assuntos
Solanum lycopersicum , Catálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Rizosfera , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
New Phytol ; 229(2): 1036-1051, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898938

RESUMO

In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5- or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.


Assuntos
Oryza , Tenuivirus , Viroses , Proteínas Relacionadas à Autofagia , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Nicotiana
5.
J Exp Bot ; 71(6): 2142-2156, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31872217

RESUMO

The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.


Assuntos
Ferredoxinas , Genes de Cloroplastos , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus , Plantas Geneticamente Modificadas/genética , Potexvirus/genética , Nicotiana/genética
6.
Theor Appl Genet ; 133(3): 967-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950199

RESUMO

KEY MESSAGE: Novel major gene resistance against Potato virus Y in diploid populations of Solanum tuberosum Groups Phureja and Tuberosum was biologically and genetically characterised. Named Ry(o)phu, it mapped to chromosome 9. A new source of genetic resistance derived from Solanum tuberosum Group Phureja against Potato virus Y (PVY) was identified and genetically characterised in three diploid biparental potato populations. Segregation data for two populations (05H1 and 08H1) suggested the presence of a single dominant gene for resistance to PVY which, following DaRT analysis of the 08H1 cross, was mapped to chromosome 9. More detailed genetic analysis of resistance utilised a well-characterised SNP-linkage map for the 06H1 population, together with newly generated marker data. In these plants, which have both S. tuberosum Group Phureja and S. tuberosum Group Tuberosum in their pedigree, the resistance was shown to map to chromosome 9 at a locus not previously associated with PVY resistance, although there is evidence for at least one other genetic factor controlling PVY infection. The resistance factor location on chromosome 9 (named as Ry(o)phu) suggests a potential role of NB-LRR genes in this resistance. Phenotypic analysis using a GUS-tagged virus revealed that a small amount of PVY replication occurred in occasional groups of epidermal cells in inoculated leaves of resistant plants, without inducing any visible hypersensitive response. However, the virus did not enter the vascular system and systemic spread was completely prevented.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Ploidias , Polimorfismo de Nucleotídeo Único , Potyvirus/genética , Potyvirus/metabolismo , Locos de Características Quantitativas , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
7.
J Gen Virol ; 100(3): 533-542, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676315

RESUMO

RNA-sequencing of plant material allows for hypothesis-free detection of multiple viruses simultaneously. This methodology relies on bioinformatics workflows for virus identification. Most workflows are designed for human clinical data, and few go beyond sequence mapping for virus identification. We present a new workflow (Kodoja) for the detection of plant virus sequences in RNA-sequence data. Kodoja uses k-mer profiling at the nucleotide level and sequence mapping at the protein level by integrating two existing tools Kraken and Kaiju. Kodoja was tested on three existing RNA-seq datasets from grapevine, and two new RNA-seq datasets from raspberry. For grapevine, Kodoja was shown to be more sensitive than a method based on contig building and blast alignments (27 viruses detected compared to 19). The application of Kodoja to raspberry, showed that field-grown raspberries were infected by multiple viruses, and that RNA-seq can identify lower amounts of virus material than reverse transcriptase PCR. This work enabled the design of new PCR-primers for detection of Raspberry yellow net virus and Beet ringspot virus. Kodoja is a sensitive method for plant virus discovery in field samples and enables the design of more accurate primers for detection. Kodoja is available to install through Bioconda and as a tool within Galaxy.


Assuntos
Biologia Computacional/métodos , Doenças das Plantas/virologia , Vírus de Plantas/genética , Primers do DNA/genética , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , RNA Viral/genética , Rubus/virologia , Análise de Sequência de RNA , Vitis/virologia , Fluxo de Trabalho
8.
New Phytol ; 224(1): 439-453, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215645

RESUMO

In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.


Assuntos
Corpos Enovelados/metabolismo , Nicotiana/imunologia , Nicotiana/virologia , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Ácido Salicílico/metabolismo , Proteínas Virais/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética
9.
J Gen Virol ; 99(11): 1515-1521, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30207520

RESUMO

Garlic virus X (GarVX) encodes a 15 kDa cysteine-rich protein (CRP). To investigate the function(s) of p15, its subcellular localization, role as a symptom determinant and capacity to act as a viral suppressor of RNA silencing (VSR) were analysed. Results showed that GFP-tagged p15 was distributed in the cytoplasm, nucleus and nucleolus. Expression of p15 from PVX caused additional systemic foliar malformation and led to increased accumulation of PVX, showing that p15 is a virulence factor for reconstructed PVX-p15. Moreover, using a transient agro-infiltration patch assay and a Turnip crinkle virus (TCV) movement complementation assay, it was demonstrated that p15 possesses weak RNA silencing suppressor activity. Removal of an amino acid motif resembling a nuclear localization signal (NLS) prevented p15 from accumulating in the nucleus but did not abolish its silencing suppression activity. This study provides the first insights into the multiple functions of the GarVX p15 protein.


Assuntos
Flexiviridae/imunologia , Flexiviridae/patogenicidade , Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Flexiviridae/genética , Fatores Imunológicos/genética , Interferência de RNA , Nicotiana/virologia , Proteínas Virais/genética , Fatores de Virulência/genética
10.
J Gen Virol ; 98(8): 1999-2000, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28786782

RESUMO

The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3'-terminal tRNA-like structure and a replication protein typical of alpha-like viruses. Differences in the number of genome components, genome organization and the mode of transmission provide the basis for genus demarcation. Tobacco mosaic virus (genus Tobamovirus) was the first virus to be discovered (in 1886); it is present in high concentrations in infected plants, is extremely stable and has been extensively studied. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Virgaviridae, which is available at www.ictv.global/report/virgaviridae.


Assuntos
Vírus de Plantas/classificação , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Plantas/virologia , RNA Viral/genética
11.
New Phytol ; 214(1): 388-399, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27976810

RESUMO

Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection.


Assuntos
Brassinosteroides/farmacologia , Ciclopentanos/farmacologia , Oryza/virologia , Oxilipinas/farmacologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Acetatos/farmacologia , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oryza/efeitos dos fármacos , Oryza/genética , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
12.
Mol Plant Microbe Interact ; 29(10): 822-828, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27681277

RESUMO

Field-grown tubers of potato were examined for infection by Tobacco rattle virus (TRV) and consequent production of corky ringspot or spraing symptoms. A microarray study identified genes that are differentially expressed in tuber tissue in response to TRV infection and to spraing production, suggesting that hypersensitive response (HR) pathways are activated in spraing-symptomatic tubers. This was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of a selected group of HR-related genes and by histochemical staining of excised tuber tissue with spraing symptoms. qRT-PCR of TRV in different regions of the same tuber slice showed that nonsymptomatic areas contained higher levels of virus relative to spraing-symptomatic areas. This suggests that spraing formation is associated with an active plant defense that reduces the level of virus in the infected tuber. Expression of two of the same plant defense genes was similarly upregulated in tubers that were infected with Potato mop-top virus, a virus that also induces spraing formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Vírus de Plantas/fisiologia , Solanum tuberosum/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/virologia , Tubérculos/genética , Tubérculos/imunologia , Tubérculos/virologia , Solanum tuberosum/imunologia , Solanum tuberosum/virologia
13.
J Gen Virol ; 97(6): 1462-1468, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27011387

RESUMO

Garlic virus X (GarVX) ORF3 encodes a p11 protein, which contributes to virus cell-to-cell movement and forms granules on the endoplasmic reticulum (ER) in Nicotiana benthamiana. Expression of p11 either from a binary vector, PVX or TMV induced ER stress and the unfolded protein response (UPR), as demonstrated by an increase in transcription of the ER luminal binding protein (BiP) and bZIP60 genes. UPR-related programmed cell death (PCD) was elicited by PVX : p11 or TMV : p11 in systemic infected leaves. Examination of p11 mutants with deletions of two transmembrane domains (TM) revealed that both were required for generating granules and for inducing necrosis. TRV-based VIGS was used to investigate the correlation between bZIP60 expression and p11-induced UPR-related PCD. Less necrosis was observed on local and systemic leaves of bZIP60 knockdown plants when infected with PVXp11, suggesting that bZIP60 plays an important role in the UPR-related PCD response to p11 in N. benthamiana.


Assuntos
Apoptose , Flexiviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Resposta a Proteínas não Dobradas , Proteínas Virais/biossíntese , Estresse do Retículo Endoplasmático , Flexiviridae/genética , Proteínas de Plantas/análise , Proteínas Virais/genética
14.
Arch Virol ; 161(5): 1415-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26906694

RESUMO

Investigation of a tombusvirus isolated from tulip plants in Scotland revealed that it was pelargonium leaf curl virus (PLCV) rather than the originally suggested tomato bushy stunt virus. The complete sequence of the PLCV genome was determined for the first time, revealing it to be 4789 nucleotides in size and to have an organization similar to that of the other, previously described tombusviruses. Primers derived from the sequence were used to construct a full-length infectious clone of PLCV that recapitulates the disease symptoms of leaf curling in systemically infected pelargonium plants.


Assuntos
Genoma Viral/genética , Pelargonium/virologia , Doenças das Plantas/virologia , Tombusvirus/genética , Sequência de Bases , Folhas de Planta/virologia
15.
J Gen Virol ; 96(11): 3432-3439, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358478

RESUMO

Members of the genus Emaravirus, including Raspberry leaf blotch virus (RLBV), are enveloped plant viruses with segmented genomes of negative-strand RNA, although the complete genome complement for any of these viruses is not yet clear. Currently, wheat mosaic virus has the largest emaravirus genome comprising eight RNAs. Previously, we identified five genomic RNAs for RLBV; here, we identify a further three RNAs (RNA6-8). RNA6-8 encode proteins that have clear homologies to one another, but not to any other emaravirus proteins. The proteins self-interacted in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments, and the P8 protein interacted with the virus nucleocapsid protein (P3) using BiFC. Expression of two of the proteins (P6 and P7) using potato virus X led to an increase in virus titre and symptom severity, suggesting that these proteins may play a role in RLBV pathogenicity; however, using two different tests, RNA silencing suppression activity was not detected for any of the RLBV proteins encoded by RNA2-8.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Rubus/virologia , Proteínas Virais/genética , Dados de Sequência Molecular , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/metabolismo , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo
16.
Arch Virol ; 159(10): 2791-3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838850

RESUMO

The complete genomic sequence of Cassava Ivorian bacilliform virus (CIBV) is described. The virus has a genomic organization similar to that of pelargonium zonate spot virus (PZSV), the type member of the genus Anulavirus, but it is most closely related to a second, recently described, anulavirus, Amazon lily mild mottle virus (ALiMMV).


Assuntos
Bromoviridae/classificação , Bromoviridae/genética , Genoma Viral/genética , Manihot/virologia , Sequência de Aminoácidos , Sequência de Bases , Variação Genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de RNA , Proteínas Virais/genética
17.
J Gen Virol ; 94(Pt 9): 2117-2128, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23761405

RESUMO

Emaravirus is a recently described genus of negative-strand RNA plant viruses. Emaravirus P4 protein localizes to plasmodesmata, suggesting that it could be a viral movement protein (MP). In the current study, we showed that the P4 protein of raspberry leaf blotch emaravirus (RLBV) rescued the cell-to-cell movement of a defective potato virus X (PVX) that had a deletion mutation in the triple gene block 1 movement-associated protein. This demonstrated that RLBV P4 is a functional MP. Sequence analyses revealed that P4 is a distant member of the 30K superfamily of MPs. All MPs of this family contain two highly conserved regions predicted to form ß-strands, namely ß1 and ß2. We explored by alanine mutagenesis the role of two residues of P4 (Ile106 and Asp127) located in each of these strands. We also made the equivalent substitutions in the 29K MP of tobacco rattle virus, another member of the 30K superfamily. All substitutions abolished the ability to complement PVX movement, except for the I106A substitution in the ß1 region of P4. This region has been shown to mediate membrane association of 30K MPs; our results show that it is possible to make non-conservative substitutions of a well-conserved aliphatic residue within ß1 without preventing the membrane association or movement function of P4.


Assuntos
Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Vírus de RNA/genética , Rosaceae/virologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Biologia Computacional , Análise Mutacional de DNA , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/isolamento & purificação , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/crescimento & desenvolvimento , Vírus de RNA/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Cultura de Vírus
18.
J Gen Virol ; 94(Pt 1): 230-240, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052393

RESUMO

ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.


Assuntos
Núcleo Celular/virologia , Retículo Endoplasmático/virologia , Mitocôndrias/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Mutação , Fases de Leitura Aberta , Vírus de Plantas/genética , Vírus de Plantas/metabolismo
19.
Plant Dis ; 97(2): 168-182, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30722311

RESUMO

Blackberry and raspberry are members of the family Rosaceae. They are classified in the genus Rubus, which comprises hundreds of species and has a center of origin in the Far East. Rubus is divided into 15 subgenera with blackberries classified in the Rubus (formerly Eubatus) and raspberries in the Idaeobatus subgenera. Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation, and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases, and phytoplasmas affecting Rubus spp. were reviewed more than 20 years ago. Since the last review on Rubus viruses, significant progress has been made in the molecular characterization of many of the viruses that infect Rubus spp. Currently, reverse transcription-polymerase chain reaction detection methods are available for most of the viruses known to infect Rubus. The goals of this article are to update the knowledge on previously characterized viruses of Rubus, highlight recently described viruses, review the virus-induced symptoms, describe the advances made in their detection, and discuss our knowledge about several virus complexes that cause serious diseases in Rubus. Virus complexes have been identified recently as the major cause of diseases in blackberries and raspberries.

20.
J Virol Methods ; 315: 114691, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36787852

RESUMO

Effective screening of plant germplasm collections for resistance to plant viruses requires that there is a rapid and efficient system in place to challenge individual plants with the virus. Potato leafroll virus (PLRV), a commercially important pathogen of potato, is able naturally to infect only the phloem-associated tissue of plants and is delivered to this tissue by feeding aphids. Mechanical (non-vector-mediated) infection by PLRV does not occur thus screening for PLRV resistance is currently laborious and time consuming. We constructed an infectious cDNA clone of a new (Hutton) isolate of PLRV in the binary vector pDIVA and transformed it into Agrobacterium tumefaciens strain LBA4404. Infiltration of this culture into leaves of Nicotiana benthamiana, a highly susceptible model plant, produced a systemic infection with PLRV, although this approach was not successful for potato. However, a very efficient and reproducible systemic infection of potato was achieved when we submerged cut stems of the plant into the agrobacterium cell suspension and then transplanted the stems into compost to grow roots and new apical leaves. Using a standardised protocol developed for this new PLRV inoculation method we have confirmed the previously described resistance to the virus in the JHI breeding line G8107(1) and identified 62 plant accessions from the Commonwealth Potato Collection in which no PLRV infection was detected.


Assuntos
Luteoviridae , Vírus de Plantas , Solanum tuberosum , Luteoviridae/genética , Plantas , Vírus de Plantas/genética , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa