Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Ecol ; : e17438, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923007

RESUMO

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.

2.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921453

RESUMO

Desert organisms have evolved physiological, biochemical and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements; energy expenditure, water loss rate and respiratory exchange rate, to characterize the response to water deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 h of the experiment. Additionally, we observed significant mass loss that is probably due to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared with hydrated males, whereas body temperature decreased for females without access to water, suggesting daily metabolic depression in females.


Assuntos
Desidratação , Peromyscus , Masculino , Animais , Feminino , Desidratação/veterinária , Desidratação/metabolismo , Clima Desértico , Água Corporal , Água
3.
Gen Comp Endocrinol ; 315: 113940, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756919

RESUMO

During breeding, multiple circulating hormones, including prolactin, facilitate reproductive transitions in species that exhibit parental care. Prolactin underlies parental behaviors and related physiological changes across many vertebrates, including birds and mammals. While circulating prolactin levels often fluctuate across breeding, less is known about how relevant target tissues vary in their prolactin responsiveness via prolactin receptor (PRLR) expression. Recent studies have also investigated prolactin (PRL) gene expression outside of the pituitary (i.e., extra-pituitary PRL), but how PRL gene expression varies during parental care in non-pituitary tissue (e.g., hypothalamus, gonads) remains largely unknown. Further, it is unclear if and how tissue-specific PRL and PRLR vary between the sexes during biparental care. To address this, we measured PRL and PRLR gene expression in tissues relevant to parental care, the endocrine reproductive hypothalamic-pituitary- gonadal (HPG) axis and the crop (a tissue with a similar function as the mammalian mammary gland), across various reproductive stages in both sexes of a biparental bird, the rock dove (Columba livia). We also assessed how these genes responded to changes in offspring presence by adding chicks mid-incubation, simulating an early hatch when prolactin levels were still moderately low. We found that pituitary PRL expression showed similar increases as plasma prolactin levels, and detected extra-pituitary PRL in the hypothalamus, gonads and crop. Hypothalamic and gonadal PRLR expression also changed as birds began incubation. Crop PRLR expression correlated with plasma prolactin, peaking when chicks hatched. In response to replacing eggs with a novel chick mid-incubation, hypothalamic and gonadal PRL and PRLR gene expression differed significantly compared to mid-incubation controls, even when plasma prolactin levels did not differ. We also found sex differences in PRL and PRLR that suggest gene expression may allow males to compensate for lower levels in prolactin by upregulating PRLR in all tissues. Overall, this study advances our understanding of how tissue-specific changes in responsiveness to parental hormones may differ across key reproductive transitions, in response to offspring cues, and between the sexes.


Assuntos
Columbidae , Prolactina , Receptores da Prolactina , Animais , Columbidae/metabolismo , Papo das Aves , Feminino , Expressão Gênica , Sistema Hipotálamo-Hipofisário , Masculino , Hipófise/metabolismo , Sistema Hipófise-Suprarrenal , Prolactina/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
4.
Mol Ecol ; 30(16): 4039-4061, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145931

RESUMO

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which multiple species share the same conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which vivid colour and pattern are produced in a Müllerian mimicry complex of poison frogs. We did this by first assembling a high-quality de novo genome assembly for the mimic poison frog Ranitomeya imitator. This assembled genome is 6.8 Gbp in size, with a contig N50 of 300 Kbp R. imitator and two colour morphs from both Ranitomeya fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes that are differentially expressed throughout development, many of them related to melanocyte development, melanin synthesis, iridophore development and guanine synthesis. Polytypic differences within species may be the result of differences in expression and/or timing of expression, whereas convergence for colour pattern between species does not appear to be due to the same changes in gene expression. In addition, we identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species. Finally, we hypothesize that genes in the keratin family are important for producing different structural colours within these frogs.


Assuntos
Mimetismo Biológico , Expressão Gênica , Genômica , Fenótipo , Pigmentação/genética
5.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34495305

RESUMO

Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.


Assuntos
Adaptação Fisiológica , Torpor , Animais , Ritmo Circadiano , Feminino , Masculino , Camundongos , Peromyscus , Fotoperíodo , Equilíbrio Hidroeletrolítico
6.
J Hered ; 112(5): 417-429, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33885791

RESUMO

Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.


Assuntos
Plumas , Estorninhos , Animais , Expressão Gênica , Iridescência , Pigmentação/genética
7.
J Hered ; 112(3): 286-302, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686424

RESUMO

Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.


Assuntos
Adaptação Fisiológica , Peromyscus , Adaptação Fisiológica/genética , Animais , Clima , Genoma , Peromyscus/genética , Análise de Sequência de DNA
8.
BMC Genomics ; 21(1): 251, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293250

RESUMO

BACKGROUND: The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS: This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS: Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.


Assuntos
Processamento Alternativo/fisiologia , Columbidae/metabolismo , Gônadas/metabolismo , Reprodução/fisiologia , Estresse Psicológico/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Processamento Alternativo/genética , Animais , Columbidae/genética , Éxons , Feminino , Ontologia Genética , Masculino , Motivos de Nucleotídeos , Isoformas de RNA , Splicing de RNA , RNA-Seq , Reprodução/genética , Caracteres Sexuais , Estresse Psicológico/genética
9.
Mol Ecol ; 29(7): 1300-1314, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130752

RESUMO

Organisms that live in deserts offer the opportunity to investigate how species adapt to environmental conditions that are lethal to most plants and animals. In the hot deserts of North America, high temperatures and lack of water are conspicuous challenges for organisms living there. The cactus mouse (Peromyscus eremicus) displays several adaptations to these conditions, including low metabolic rate, heat tolerance, and the ability to maintain homeostasis under extreme dehydration. To investigate the genomic basis of desert adaptation in cactus mice, we built a chromosome-level genome assembly and resequenced 26 additional cactus mouse genomes from two locations in southern California (USA). Using these data, we integrated comparative, population, and functional genomic approaches. We identified 16 gene families exhibiting significant contractions or expansions in the cactus mouse compared to 17 other Myodontine rodent genomes, and found 232 sites across the genome associated with selective sweeps. Functional annotations of candidate gene families and selective sweeps revealed a pervasive signature of selection at genes involved in the synthesis and degradation of proteins, consistent with the evolution of cellular mechanisms to cope with protein denaturation caused by thermal and hyperosmotic stress. Other strong candidate genes included receptors for bitter taste, suggesting a dietary shift towards chemically defended desert plants and insects, and a growth factor involved in lipid metabolism, potentially involved in prevention of dehydration. Understanding how species adapted to deserts will provide an important foundation for predicting future evolutionary responses to increasing temperatures, droughts and desertification in the cactus mouse and other species.


Assuntos
Adaptação Fisiológica/genética , Clima Desértico , Genética Populacional , Peromyscus/genética , Animais , California , Evolução Molecular , Feminino , Variação Genética , Genoma , Genômica , Masculino , Família Multigênica , Seleção Genética
10.
BMC Evol Biol ; 19(1): 85, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30995908

RESUMO

BACKGROUND: Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. RESULTS: Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). CONCLUSIONS: Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog.


Assuntos
Anuros/genética , Regulação da Expressão Gênica , Pigmentação da Pele/genética , Animais , Cor , Ontologia Genética , Melaninas/metabolismo , Fenótipo , Análise de Componente Principal , Transcriptoma/genética
11.
Mol Biol Evol ; 35(12): 2913-2927, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517748

RESUMO

We sequenced the genome of the strawberry poison frog, Oophaga pumilio, at a depth of 127.5× using variable insert size libraries. The total genome size is estimated to be 6.76 Gb, of which 4.76 Gb are from high copy number repetitive elements with low differentiation across copies. These repeats encompass DNA transposons, RNA transposons, and LTR retrotransposons, including at least 0.4 and 1.0 Gb of Mariner/Tc1 and Gypsy elements, respectively. Expression data indicate high levels of gypsy and Mariner/Tc1 expression in ova of O. pumilio compared with Xenopus laevis. We further observe phylogenetic evidence for horizontal transfer (HT) of Mariner elements, possibly between fish and frogs. The elements affected by HT are present in high copy number and are highly expressed, suggesting ongoing proliferation after HT. Our results suggest that the large amphibian genome sizes, at least partially, can be explained by a process of repeated invasion of new transposable elements that are not yet suppressed in the germline. We also find changes in the spliceosome that we hypothesize are related to permissiveness of O. pumilio to increases in intron length due to transposon proliferation. Finally, we identify the complement of ion channels in the first genomic sequenced poison frog and discuss its relation to the evolution of autoresistance to toxins sequestered in the skin.


Assuntos
Anuros/genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Animais , Evolução Molecular , Canais Iônicos/genética , RNA Interferente Pequeno , Spliceossomos/genética
12.
Bioinformatics ; 33(10): 1473-1478, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158639

RESUMO

MOTIVATION: Whole metagenome shotgun sequencing is a powerful approach for assaying the functional potential of microbial communities. We currently lack tools that efficiently and accurately align DNA reads against protein references, the technique necessary for constructing a functional profile. Here, we present PALADIN-a novel modification of the Burrows-Wheeler Aligner that provides accurate alignment, robust reporting capabilities and orders-of-magnitude improved efficiency by directly mapping in protein space. RESULTS: We compared the accuracy and efficiency of PALADIN against existing tools that employ nucleotide or protein alignment algorithms. Using simulated reads, PALADIN consistently outperformed the popular DNA read mappers BWA and NovoAlign in detected proteins, percentage of reads mapped and ontological similarity. We also compared PALADIN against four existing protein alignment tools: BLASTX, RAPSearch2, DIAMOND and Lambda, using empirically obtained reads. PALADIN yielded results seven times faster than the best performing alternative, DIAMOND and nearly 8000 times faster than BLASTX. PALADIN's accuracy was comparable to all tested solutions. AVAILABILITY AND IMPLEMENTATION: PALADIN was implemented in C, and its source code and documentation are available at https://github.com/twestbrookunh/paladin. CONTACT: anthonyw@wildcats.unh.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Bactérias/genética , Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Microbiota/genética
13.
Horm Behav ; 100: 56-68, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378207

RESUMO

Stress is a well-known cause of reproductive dysfunction in many species, including birds, rodents, and humans, though males and females may respond differently. A powerful way to investigate how stress affects reproduction is by examining its effects on a biological system essential for regulating reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. Often this is done by observing how a stressor affects the amount of glucocorticoids, such as cortisol or corticosterone, circulating in the blood and their relationship with a handful of known HPG-producing reproductive hormones, like testosterone and estradiol. Until now, we have lacked a full understanding of how stress affects all genomic activity of the HPG axis and how this might differ between the sexes. We leveraged a highly replicated and sex-balanced experimental approach to test how male and female rock doves (Columba livia) respond to restraint stress at the level of their transcriptome. Females exhibit increased genomic responsiveness to stress at all levels of their HPG axis as compared to males, and these responsive genes are mostly unique to females. Reasons for this may be due to fluctuations in the female endocrine environment over the reproductive cycle and/or their evolutionary history, including parental investment and the potential for maternal effects. Direct links between genome to phenome cause and effect cannot be ascertained at this stage; however, the data we report provide a vital genomic foundation on which sex-specific reproductive dysfunction and adaptation in the face of stress can be further experimentally studied, as well as novel gene targets for genetic intervention and therapy investigations.


Assuntos
Columbidae/fisiologia , Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Reprodução/genética , Caracteres Sexuais , Estresse Psicológico/genética , Transcriptoma , Adaptação Psicológica/fisiologia , Animais , Columbidae/genética , Columbidae/metabolismo , Corticosterona/metabolismo , Estradiol/metabolismo , Feminino , Masculino , Reprodução/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Testosterona/metabolismo
15.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328088

RESUMO

The harsh and dry conditions of desert environments have resulted in genomic adaptations, allowing for desert organisms to withstand prolonged drought, extreme temperatures, and limited food resources. Here, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements to explore the whole-organism physiological and genomic response to water deprivation in the desert-adapted cactus mouse (Peromyscus eremicus). The findings encompass the identification of differentially expressed genes and correlative analysis between phenotypes and gene expression patterns across multiple tissues. Specifically, we found robust activation of the vasopressin renin-angiotensin-aldosterone system (RAAS) pathways, whose primary function is to manage water and solute balance. Animals reduce food intake during water deprivation, and upregulation of PCK1 highlights the adaptive response to reduced oral intake via its actions aimed at maintained serum glucose levels. Even with such responses to maintain water balance, hemoconcentration still occurred, prompting a protective downregulation of genes responsible for the production of clotting factors while simultaneously enhancing angiogenesis which is thought to maintains tissue perfusion. In this study, we elucidate the complex mechanisms involved in water balance in the desert-adapted cactus mouse, P. eremicus. By prioritizing a comprehensive analysis of whole-organism physiology and multi-tissue gene expression in a simulated desert environment, we describe the complex and successful response of regulatory processes.

16.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746252

RESUMO

Understanding the relationship between dietary fat and physiological responses is crucial in species adapted to arid environments where water scarcity is common. In this study, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements, investigating the effects of dietary fat in the desert-adapted cactus mouse ( Peromyscus eremicus ). We show impacts on immune function, circadian gene regulation, and mitochondrial function for mice fed a lower-fat diet compared to mice fed a higher-fat diet. In arid environments with severe water scarcity, even subtle changes in organismal health and water balance can affect physical performance, potentially impacting survival and reproductive success. The study sheds light on the complex interplay between diet, physiological processes, and environmental adaptation, providing valuable insights into the multifaceted impacts of dietary choices on organismal well-being and adaptation strategies in arid habitats.

17.
Genome Biol Evol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874406

RESUMO

Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin color patches, including those that are involved in melanin synthesis (e.g., mlana, pmel, tyrp1), iridophore development (e.g., paics, ppat, ak1), pteridine synthesis (e.g., gch1, recql4, xdh), and carotenoid metabolism (e.g., dgat2, rbp1, scarb2). In addition, using weighted gene network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 14 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).

18.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461486

RESUMO

Desert organisms have evolved physiological, biochemical, and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements to characterize the response to water-deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 hours of the experiment. Additionally, we observed significant weight loss likely related to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared to hydrated males while body temperature decreased for females without access to water compared to hydrated, suggesting daily torpor in females.

19.
Microbiol Spectr ; 11(6): e0271523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888992

RESUMO

IMPORTANCE: Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of Myotis lucifugus and Perimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Quirópteros/microbiologia , Pele , Nariz
20.
Evolution ; 76(4): 782-798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271737

RESUMO

The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.


Assuntos
Evolução Molecular , Hominidae , Animais , Cromossomos/genética , Genoma , Hominidae/genética , Mamíferos/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa