Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18032-18040, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874569

RESUMO

Herein, we report that (S,S)-prophenolMg2(µ-OnBu)(THF)2 ((S,S)-1, prophenol = (S,S)-2,6-bis[2-(hydroxydiphenylmethyl)pyrrolidin-1-ylmethyl]-4-methylphenol) is a highly enantioselective (kR/kS = 140) precatalyst for ring-opening polymerization of rac-ß-butyrolactone (ß-BL) to isotactic poly(3-hydroxybutyrate) (i-PHB), a high performance, biodegradable polyester. Precatalyst (S,S)-1 polymerizes (R)-ß-BL with an inversion of stereochemistry to (S)-PHB with a m% (percentage of adjacent linkages with a meso configuration) of 98% at 41% conversion and Tm of 165 °C under a variety of conditions. Complex (S,S)-1 demonstrates unique polymerization kinetics, as it does not polymerize the preferred enantiomer, (R)-ß-BL, alone. Mechanistic studies revealed that (S)-ß-BL is needed to convert (S,S)-1 into the active enantioselective polymerization catalyst. To the best of our knowledge, (S,S)-1 produces i-PHB with the highest degree of isotacticity observed from a polymerization of rac-ß-BL. This study informs the design and understanding of future enantioselective and earth-abundant metal catalysts for ring-opening polymerization of ß-lactones.

2.
J Am Chem Soc ; 146(17): 11616-11621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639535

RESUMO

We report herein a convenient one-pot synthesis for the shelf-stable molecular complex [Mn(NO3)3(OPPh3)2] (2) and describe the properties that make it a powerful and selective one-electron oxidation (deelectronation) reagent. 2 has a high reduction potential of 1.02 V versus ferrocene (MeCN) (1.65 vs normal hydrogen electrode), which is one the highest known among readily available redox agents used in chemical synthesis. 2 exhibits stability toward air in the solid state, can be handled with relative ease, and is soluble in most common laboratory solvents such as MeCN, dichloromethane, and fluorobenzene. 2 is substitutionally labile with respect to the coordinated (pseudo)halide ions enabling the synthesis of other new Mn(III) nitrato complexes also with high reduction potentials ranging from 0.6 to 1.0 V versus ferrocene.

3.
J Am Chem Soc ; 145(2): 787-793, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608280

RESUMO

Tertiary nitroalkanes and the corresponding α-tertiary amines represent important motifs in bioactive molecules and natural products. The C-alkylation of secondary nitroalkanes with electrophiles is a straightforward strategy for constructing tertiary nitroalkanes; however, controlling the stereoselectivity of this type of reaction remains challenging. Here, we report a highly chemo- and stereoselective C-alkylation of nitroalkanes with alkyl halides catalyzed by an engineered flavin-dependent "ene"-reductase (ERED). Directed evolution of the old yellow enzyme from Geobacillus kaustophilus provided a triple mutant, GkOYE-G7, capable of synthesizing tertiary nitroalkanes in high yield and enantioselectivity. Mechanistic studies indicate that the excitation of an enzyme-templated charge-transfer complex formed between the substrates and cofactor is responsible for radical initiation. Moreover, a single-enzyme two-mechanism cascade reaction was developed to prepare tertiary nitroalkanes from simple nitroalkenes, highlighting the potential to use one enzyme for two mechanistically distinct reactions.


Assuntos
Alcanos , Nitrocompostos , Alcanos/química , Nitrocompostos/química , Alquilação , Catálise
4.
J Am Chem Soc ; 145(24): 13273-13283, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294975

RESUMO

Metal-organic frameworks (MOFs) are crystalline, porous solids constructed from organic linkers and inorganic nodes that are promising for applications in chemical separations, gas storage, and catalysis, among many others. However, a major roadblock to the widespread implementation of MOFs, including highly tunable and hydrolytically stable Zr- and Hf-based frameworks, is their benchtop-scalable synthesis, as MOFs are typically prepared under highly dilute (≤0.01 M) solvothermal conditions. This necessitates the use of liters of organic solvent to prepare only a few grams of MOF. Herein, we demonstrate that Zr- and Hf-based frameworks (eight examples) can self-assemble at much higher reaction concentrations than are typically utilized, up to 1.00 M in many cases. Combining stoichiometric amounts of Zr or Hf precursors with organic linkers at high concentrations yields highly crystalline and porous MOFs, as confirmed by powder X-ray diffraction (PXRD) and 77 K N2 surface area measurements. Furthermore, the use of well-defined pivalate-capped cluster precursors avoids the formation of ordered defects and impurities that arise from standard metal chloride salts. These clusters also introduce pivalate defects that increase the exterior hydrophobicity of several MOFs, as confirmed by water contact angle measurements. Overall, our findings challenge the standard assumption that MOFs must be prepared under highly dilute solvothermal conditions for optimal results, paving the way for their scalable and user-friendly synthesis in the laboratory.

5.
J Am Chem Soc ; 145(24): 13384-13391, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279382

RESUMO

This study confirms the hypothesis that [MnCl3(OPPh3)2] (1) and acetonitrile-solvated MnCl3 (i.e., [MnCl3(MeCN)x]) can be used as synthons to prepare Mn(III) chloride complexes with facially coordinating ligands. This was achieved through the preparation and characterization of six new {MnIIICl} complexes using anionic ligands TpH (tris(pyrazolyl)borate) and TpMe (tris(3,5-dimethylpyrazolyl)borate). The MnIII-chloride dissociation and association equilibria (Keq) and MnIII/II reduction potentials were quantified in DCM. These two thermochemical parameters (Keq and E1/2), in addition to the known Cl-atom reduction potential in DCM, enabled the quantification of the Mn-Cl bond dissociation (homolysis) free energy of 21 and 23 ± 7 kcal/mol at room temperature for R = H and Me, respectively. These are in reasonable agreement with the bond dissociation free energy (BDFEM-Cl) of 34 ± 6 kcal/mol calculated using density functional theory. The BDFEM-Cl of 1 was also calculated (25 ± 6 kcal/mol). These energies were used in predictive C-H bond reactivity.

6.
J Am Chem Soc ; 145(21): 11866-11874, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199445

RESUMO

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.


Assuntos
Catálise , Alquilação , Calixarenos/química , Indóis/química
7.
Inorg Chem ; 62(5): 1766-1775, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35699516

RESUMO

Cofacial porphyrin catalysts for the Oxygen Reduction Reaction (ORR) formed via coordination-driven self-assembly have so far been limited to designs with fourfold symmetry, where four molecular clips bridge two porphyrin sites. We have synthesized six PynPhm (Py = pyridyl, Ph = phenyl) metalloporphyrin prisms (Co2+, Zn2+) bridged by molecular clips containing two Rh3+ centers. Four of these structures are lower symmetry, with the Py3Ph and Py2Ph2 prisms containing three and two molecular clips, respectively. The Co2+ species were evaluated for their ORR activity. Cyclic and hydrodynamic voltammetry studies of heterogeneous catalyst inks in aqueous media revealed marked differences in selectivity from ∼5% (Py3Ph) to ∼37% (Py2Ph2) for the formation of H2O2. The single-crystal X-ray structure of the Zn2 Py2Ph2 prism shows an offset between the porphyrin faces. This structural feature may be responsible for the change in selectivity, consistent with previous studies of covalently tethered cofacial porphyrins that have shown that geometry is a critical determinant of two-electron/two-proton versus four-electron/four-proton pathways. Extraction of standard rate constants ks for the ORR revealed a cofacial enhancement of ∼2 orders of magnitude over mononuclear Co2+ tetrapyridyl porphyrin. Even though all the prisms described here use the same molecular clip, the resultant structures, and thus the reactivity for the ORR, differ significantly based on the number and orientation of pyridyl donor groups on the porphyrins, highlighting how coordination-driven self-assembly can be used to rapidly tune dinuclear catalysts.

8.
Inorg Chem ; 62(38): 15450-15464, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37707794

RESUMO

Serendipitous discovery of bida (i.e., N1-Ar-N2-((1-Ar-1-benzo[d]imidazol-2-yl)methyl)benzene-1,2-diamide; Ar = 2,6-iPr-C6H3), a potentially redox noninnocent, hemilabile pincer ligand with a methylene group that may facilitate proton/H atom reactivity, prompted its investigation. Chromium was chosen for study due to its multiple stable oxidation states. Disodium salt (bida)Na2(THF)n was prepared by thermal rearrangement of (dadi)Na2(THF)4 (i.e., (N,N'-di-2-(2,6-diisopropylphenylamine)phenylglyoxaldiimine)-Na2(THF)4). Salt metathesis of (bida)Na2(THF)n (generated in situ) with CrCl3(THF)3 or Cl3V═NAr (Ar = 2,6-iPr2C6H3) afforded (bida)CrCl(THF) (1-THF) and (bida)ClV═NAr, respectively. Substitutions provided (bida)CrCl(PMe2Ph) (1-PMe2Ph) and (bida)CrR(THF) (2-R, where R = Me, CH2CMe2Ph (Nph)). Oxidation of 1-THF with ArN3 (Ar = 2,6-iPr2C6H3) or AdN3 (Ad = 1-adamantyl) generated (bida)ClCr═NAr (3═NAr) and (bida)ClCr═NAd (3═NAd) and subsequent alkylation converted these to (bida)R'Cr═NR (R' = Me, R = Ad, Ar, 5═NR; R' = CH2CMe2Ph (Nph), R = Ad, Ar, 6═NR). In contrast, the addition of AdN3 to 2-Nph gave the insertion product (bida)Cr(κ2-N,N-ArN3Nph) (7). Addition of N-chlorosuccinimide to 1-THF produced (bia)CrCl2(THF) (8), where bia is the pincer derived via hydrogen atom loss from bida methylene. A similar HAT afforded (bia)ClCr(CNAr')2 (9, Ar' = 2,6-Me2C6H3) when 3═NAd was exposed to Ar'NC. An empirical equation of charge was applied to each bida species, whose metric parameters are unchanging despite formal oxidation state conversions from Cr(III) to Cr(V). Calculations and Mulliken spin density assessments reveal several situations in which antiferromagnetic (AF) coupling and admixtures of integer ground states (GSs) describe a complicated electronic structure.

9.
Angew Chem Int Ed Engl ; 62(6): e202214920, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515400

RESUMO

Inhibitors of the mitochondrial calcium uniporter (MCU) are valuable tools for studying the role of mitochondrial Ca2+ in various pathophysiological conditions. In this study, a new fluorogenic MCU inhibitor, RuOCou, is presented. This compound is an analogue of the known MCU inhibitor Ru265 that contains fluorescent axial coumarin carboxylate ligands. Upon aquation of RuOCou and release of the axial coumarin ligands, a simultaneous increase in its MCU-inhibitory activity and fluorescence intensity is observed. The fluorescence response of this compound enabled its aquation to be monitored in both HeLa cell lysates and live HeLa cells. This fluorogenic prodrug represents a potential theranostic MCU inhibitor that can be leveraged for the treatment of human diseases related to MCU activity.


Assuntos
Canais de Cálcio , Mitocôndrias , Humanos , Células HeLa , Ligantes , Mitocôndrias/metabolismo , Cálcio/metabolismo
10.
J Am Chem Soc ; 144(37): 16761-16766, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36067378

RESUMO

The complex [MnCl3(OPPh3)2] (1) is a bench-stable and easily prepared source of MnCl3. It is prepared by treating acetonitrile solvated MnCl3 (2) with Ph3PO and collecting the resulting blue precipitate. 1 is useful in coordination reactions by virtue of the labile Ph3PO ligands, and this is demonstrated through the synthesis of {Tpm*}MnCl3 (3). In addition, methodologies in synthesis that rely on difficult or cumbersome to prepare solutions of reactive MnCl3 can be accomplished using 1 instead. This is demonstrated through alkene dichlorinations in a wide range of solvents, open to air, and with good substrate scope. Light-accelerated halogenation and radical sensitive experiments support a radical mechanism involving stepwise Cl-atom transfer(s) from 1.


Assuntos
Alcenos , Manganês , Acetonitrilas , Cloretos , Halogênios , Ligantes , Solventes
11.
J Am Chem Soc ; 144(51): 23379-23395, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36534055

RESUMO

Camphorsultam-based lithium enolates referred to colloquially as Oppolzer enolates are examined spectroscopically, crystallographically, kinetically, and computationally to ascertain the mechanism of alkylation and the origin of the stereoselectivity. Solvent- and substrate-dependent structures include tetramers for alkyl-substituted enolates in toluene, unsymmetric dimers for aryl-substituted enolates in toluene, substrate-independent symmetric dimers in THF and THF/toluene mixtures, HMPA-bridged trisolvated dimers at low HMPA concentrations, and disolvated monomers for the aryl-substituted enolates at elevated HMPA concentrations. Extensive analyses of the stereochemistry of aggregation are included. Rate studies for reaction with allyl bromide implicate an HMPA-solvated ion pair with a +Li(HMPA)4 counterion. Dependencies on toluene and THF are attributed to exclusively secondary-shell (medium) effects. Aided by density functional theory (DFT) computations, a stereochemical model is presented in which neither chelates nor the lithium gegenion serves roles. The stereoselectivity stems from the chirality within the sultam ring and not the camphor skeletal core.


Assuntos
Hempa , Lítio , Estrutura Molecular , Lítio/química , Tolueno , Alquilação
12.
Bioconjug Chem ; 33(6): 1222-1231, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670495

RESUMO

Actinium-225 (225Ac) is one of the most promising radionuclides for targeted alpha therapy (TAT). With a half-life of 9.92 days and a decay chain that emits four high-energy α particles, 225Ac is well-suited for TAT when conjugated to macromolecular targeting vectors that exhibit extended in vivo circulation times. The implementation of 225Ac in these targeted constructs, however, requires a suitable chelator that can bind and retain this radionuclide in vivo. Previous work has demonstrated the suitability of a diaza-18-crown-6 macrocyclic chelator H2macropa for this application. Building upon these prior efforts, in this study, two rigid variants of H2macropa, which contain either one (H2BZmacropa) or two (H2BZ2macropa) benzene rings within the macrocyclic core, were synthesized and investigated for their potential use for 225Ac TAT. The coordination chemistry of these ligands with La3+, used as a nonradioactive model for Ac3+, was carried out. Both NMR spectroscopic and X-ray crystallographic studies of the La3+ complexes of these ligands revealed similar structural features to those found for the related complex of H2macropa. Thermodynamic stability constants of the La3+ complexes, however, were found to be 1 and 2 orders of magnitude lower than those of H2macropa for H2BZmacropa and H2BZ2macropa, respectively. The decrease in thermodynamic stability was rationalized via the use of density functional theory calculations. 225Ac radiolabeling and serum stability studies with H2BZmacropa showed that this chelator compares favorably with H2macropa. Based on these promising results, a bifunctional version of this chelator, H2BZmacropa-NCS, was synthesized and conjugated to the antibody codrituzumab (GC33), which targets the liver cancer biomarker glypican-3 (GPC3). The resulting GC33-BZmacropa conjugate and an analogous GC33-macropa conjugate were evaluated for their 225Ac radiolabeling efficiencies, antigen-binding affinities, and in vivo biodistribution in HepG2 liver cancer tumor-bearing mice. Although both conjugates were comparably effective in their radiolabeling efficiencies, [225Ac]Ac-GC33-BZmacropa showed slightly poorer serum stability and biodistribution than [225Ac]Ac-GC33-macropa. Together, these results establish H2BZmacropa-NCS as a new bifunctional chelator for the preparation of 225Ac radiopharmaceuticals.


Assuntos
Actínio , Quelantes , Actínio/química , Actínio/uso terapêutico , Animais , Quelantes/química , Ligantes , Camundongos , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
13.
Chemistry ; 28(53): e202201766, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695788

RESUMO

Dinuclear manganese hydride complexes of the form [Mn2 (CO)8 (µ-H)(µ-PR2 )] (R=Ph, 1; R=iPr, 2) were used in E-selective alkyne semi-hydrogenation (E-SASH) catalysis. Catalyst speciation studies revealed rich coordination chemistry and the complexes thus formed were isolated and in turn tested as catalysts; the results underscore the importance of dinuclearity in engendering the observed E-selectivity and provide insights into the nature of the active catalyst. The insertion product obtained from treating 2 with (cyclopropylethynyl)benzene contains a cis-alkenyl bridging ligand with the cyclopropyl ring being intact. Treatment of this complex with H2 affords exclusively trans-(2-cyclopropylvinyl)benzene. These results, in addition to other control experiments, indicate a non-radical mechanism for E-SASH, which is highly unusual for Mn-H catalysts. The catalytically active species are virtually inactive towards cis to trans alkene isomerization indicating that the E-selective process is intrinsic and dinuclear complexes play a critical role. A reaction mechanism is proposed accounting for the observed reactivity which is fully consistent with a kinetic analysis of the rate limiting step and is further supported by DFT computations.

14.
Chemistry ; 28(40): e202201042, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35522212

RESUMO

This work details the synthesis, characterization, and catalytic activity of reactive low-coordinate organozinc complexes. The complexes activate hydrogen and they appear to be more active in hydrogenation of ketones and imines than their tridentate pincer analogs. This is thought, in part, to be due to the lack of trailing third phosphorus arm present in previous work. DFT computations reveal a sigma-bond metathesis mechanism is comparable to an alternative aromatization/dearomatization metal-ligand cooperative mechanism.


Assuntos
Cetonas , Zinco , Catálise , Hidrogenação , Ligantes
15.
Chemistry ; 28(22): e202200472, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213751

RESUMO

Inclusion of a second nitrogen atom in the aromatic core of phosphorus-nitrogen (PN) heterocycles results in unexpected tautomerization to a nonaromatic form. This tautomerization, initially observed in the solid state through X-ray crystallography, is also explained by computational analysis. We prepared an electron deficient analogue (2 e) with a fluorine on the pyridine ring and showed that the weakly basic pyridine resisted tautomerization, providing key insights to why the transformation occurs. To study the difference in solution vs. solid-state heterocycles, alkylated analogues that lock in the quinoidal tautomer were synthesized and their different 1 H NMR and UV/Vis spectra studied. Ultimately, we determined that all heterocycles are the aromatic tautomer in solution and all but 2 e switch to the quinoidal tautomer in the solid state. Better understanding of this transformation and under what circumstances it occurs suggest future use in a switchable on/off hydrogen-bond-directed receptor that can be tuned for complementary hydrogen bonding.


Assuntos
Nitrogênio , Fósforo , Ligação de Hidrogênio , Piridinas
16.
J Org Chem ; 87(23): 15732-15743, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36383039

RESUMO

Herein, a synthetic method was developed to prepare a series of tris(dialkylamino)sulfonium and sulfoxonium cations from sulfur monochloride. Alkaline stability studies of these two cation families in 2 M KOH/CD3OH solution at 80 °C revealed how degradation pathways change as a function of the oxidation state of the S center, as determined by 1H NMR spectroscopy. The sulfonium cations (+S(NR2)3) typically degrade by nucleophilic attack at the sulfur atom with loss of an amino group and a proton transfer reaction to produce sulfoxides, while the sulfoxoniums (+O═S(NR2)3) tend to degrade by loss of an R group to form sulfoximines. From the group of sulfoniums and sulfoxoniums explored in this work, the tris(piperidino)sulfoxonium cation was noted to have excellent alkaline stability. This sulfoxonium should be suitable for future examination as a tethered cation in anion-exchange membranes (AEMs), or as a phase-transfer catalyst in biphasic reactions.


Assuntos
Enxofre , Humanos , Cátions , Ânions , Espectroscopia de Ressonância Magnética , Catálise
17.
Inorg Chem ; 61(43): 17299-17312, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36260092

RESUMO

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that resides on the inner membrane of the mitochondria and mediates calcium uptake into this organelle. Given the critical role of mitochondrial calcium trafficking in cellular function, inhibitors of this channel have arisen as tools for studying the biological relevance of this process and as potential therapeutic agents. In this study, four new analogues of the previously reported Ru-based MCU inhibitor [ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3 (Ru265) are reported. These compounds, which bear axial carboxylate ligands, are of the general formula [(RCO2)Ru(NH3)4(µ-N)Ru(NH3)4(O2CR)]X3, where X = NO3- or CF3SO3- and R = H (1), CH3 (2), CH2CH3 (3), and (CH2)2CH3 (4). These complexes were fully characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis. X-ray crystal structures of 1 and 3 were obtained, revealing the expected presence of both the linear Ru(µ-N)Ru core and axial formate and propionate ligands. The axial carboxylate ligands of complexes 1-4 are displaced by water in buffered aqueous solution to give the aquated compound Ru265'. The kinetics of these processes were measured by 1H NMR spectroscopy, revealing half-lives that span 5.9-9.9 h at 37 °C. Complex 1 with axial formate ligands underwent aquation approximately twice as fast as the other compounds. In vitro cytotoxicity and mitochondrial membrane potential measurements carried out in HeLa and HEK293T cells demonstrated that none of these four complexes negatively affects cell viability or mitochondrial function. The abilities of 1-4 to inhibit mitochondrial calcium uptake in permeabilized HEK293T cells were assessed and compared to that of Ru265. Fresh solutions of 1-4 are approximately 2-fold less potent than Ru265 with IC50 values in the range of 14.7-19.1 nM. Preincubating 1-4 in aqueous buffers for longer time periods to allow for the aquation reactions to proceed increases their potency of mitochondrial uptake inhibition to match that of Ru265. This result indicates that 1-4 are aquation-activated prodrugs of Ru265'. Finally, 1-4 were shown to inhibit mitochondrial calcium uptake in intact, nonpermeabilized cells, revealing their value as tools and potential therapeutic agents for mitochondrial calcium-related disorders.


Assuntos
Cálcio , Pró-Fármacos , Humanos , Cálcio/metabolismo , Formiatos , Células HEK293 , Ligantes
18.
Inorg Chem ; 61(8): 3443-3457, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175754

RESUMO

Diruthenium paddlewheel complexes supported by electron-rich anilinopyridinate (Xap) ligands were synthesized in the course of the first in-depth structural and spectroscopic interrogation of monocationic [Ru2(Xap)4Cl]+ species in the Ru26+ oxidation state. Despite paramagnetism of the compounds, 1H NMR spectroscopy proved highly informative for determining the isomerism of the Ru25+ and Ru26+ compounds. While most compounds are found to have the polar (4,0) geometry, with all four Xap ligands in the same orientation, some synthetic procedures resulted in a mixture of (4,0) and (3,1) isomers, most notably in the case of the parent compound Ru2(ap)4Cl. The isomerism of this compound has been overlooked in previous reports. Electrochemical studies demonstrate that oxidation potentials can be tuned by the installation of electron donating groups to the ligands, increasing accessibility of the Ru26+ oxidation state. The resulting Ru26+ monocations were found to have the expected (π*)2 ground state, and an in-depth study of the electronic transitions by Vis/NIR absorption and MCD spectroscopies with the aid of TD-DFT allowed for the assignment of the electronic spectra. The empty δ* orbital is the major acceptor orbital for the most prominent electronic transitions. Both Ru25+ and Ru26+ compounds were studied by Ru K-edge X-ray absorption spectroscopy; however, the rising edge energy is insensitive to redox changes in the compounds due to the broad line shape observed for 4d transition metal K-edges. DFT calculations indicate the presence of ligand orbitals at the frontier level, suggesting that further oxidation beyond Ru26+ will be ligand-centered rather than metal-centered.

19.
Inorg Chem ; 61(2): 801-806, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34965102

RESUMO

The radionuclides 225Ac3+ and 213Bi3+ possess favorable physical properties for targeted alpha therapy (TAT), a therapeutic approach that leverages α radiation to treat cancers. A chelator that effectively binds and retains these radionuclides is required for this application. The development of ligands for this purpose, however, is challenging because the large ionic radii and charge-diffuse nature of these metal ions give rise to weaker metal-ligand interactions. In this study, we evaluated two 18-membered macrocyclic chelators, macrodipa and py-macrodipa, for their ability to complex 225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ was probed computationally and with Bi3+ experimentally via NMR spectroscopy and X-ray crystallography. Furthermore, radiolabeling studies were conducted, revealing the efficient incorporation of both 225Ac3+ and 213Bi3+ by py-macrodipa that matches or surpasses the well-known chelators macropa and DOTA. Incubation in human serum at 37 °C showed that ∼90% of the 225Ac3+-py-macrodipa complex dissociates after 1 d. The Bi3+-py-macrodipa complex possesses remarkable kinetic inertness reflected by an EDTA transchelation challenge study, surpassing that of Bi3+-macropa. This work establishes py-macrodipa as a valuable candidate for 213Bi3+ TAT, providing further motivation for its implementation within new radiopharmaceutical agents.


Assuntos
Quelantes
20.
Inorg Chem ; 61(3): 1644-1658, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34986307

RESUMO

Sulfur/carbon/sulfur pincer ligands have an interesting combination of strong-field and weak-field donors, a coordination environment that is also present in the nitrogenase active site. Here, we explore the electronic structures of iron(II) and iron(III) complexes with such a pincer ligand, bearing a monodentate phosphine, thiolate S donor, amide N donor, ammonia, or CO. The ligand scaffold features a proton-responsive thioamide site, and the protonation state of the ligand greatly influences the reduction potential of iron in the phosphine complex. The N-H bond dissociation free energy, derived from the Bordwell equation, is 56 ± 2 kcal/mol. Electron paramagnetic resonance (EPR) spectroscopy and superconducting quantum interference device (SQUID) magnetometry measurements show that the iron(III) complexes with S and N as the fourth donors have an intermediate spin (S = 3/2) ground state with a large zero field splitting, and X-ray absorption spectra show a high Fe-S covalency. The Mössbauer spectrum changes drastically with the position of a nearby alkali metal cation in the iron(III) amido complex, and density functional theory calculations explain this phenomenon through a change between having the doubly occupied orbital as dz2 or dyz, as the former is more influenced by the nearby positive charge.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa