Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580201

RESUMO

The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the Pseudoalteromonas luteoviolacea indolmycin pathway. Our work, combining X-ray crystallographic, biochemical, spectroscopic, and computational studies, supports a shared mechanism with arginine hydroxylases, involving two rounds of single-electron transfer to oxygen and superoxide rebound at the 4' carbon of the PLP cofactor. The precise positioning of a water molecule in the active site is proposed to control the final reaction outcome. This proposed mechanism provides a unified framework to understand how oxygen can be activated by PLP-dependent enzymes for oxidation of arginine and elucidates a shared mechanistic pathway and intertwined evolutionary history for arginine desaturases and hydroxylases.


Assuntos
Aminoácido Oxirredutases/metabolismo , Fosfato de Piridoxal/metabolismo , Aminoácido Oxirredutases/química , Domínio Catalítico , Cristalografia por Raios X , Evolução Química , Oxigenases de Função Mista/metabolismo , Conformação Proteica
2.
Inorg Chem ; 62(37): 15180-15194, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37676794

RESUMO

High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..

3.
J Am Chem Soc ; 144(26): 11594-11607, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749669

RESUMO

Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.


Assuntos
Cromo , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Metais , Oxirredução
4.
Inorg Chem ; 61(14): 5563-5571, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35347989

RESUMO

The interplay between the primary and secondary coordination spheres in biological metal sites plays an essential role in controlling their properties. Some of the clearest examples of this are from copper sites in blue and purple copper proteins. Many such proteins contain methionine (Met) in the primary coordination sphere as a weakly bound ligand to Cu. While the effects of replacing the coordinated Met are understood, less so is the importance of its second-sphere interactions. In this combined informatics and experimental study, we first present a bioinformatics investigation of the second-sphere environments in biological Met-Cu motifs. The most common interaction is between the Met-CH3 and the π-face of a phenylalanine (Phe) (81% of surveyed structures), tyrosine (Tyr) (11%), and tryptophan (Trp) (8%). In most cases, the Met-CH3 also forms a contact with a π-face of one of a Cu-ligating histidine-imidazole. Such interactions are widely distributed in different Cu proteins. Second, to explore the impact of the second-sphere interactions of Met, a series of artificial Pseudomonas aeruginosa azurin proteins were produced where the native Phe15 was replaced with Tyr or Trp. The proteins were characterized using optical and magnetic resonance spectroscopies, X-ray diffraction, electrochemistry, and an investigation of the time-resolved electron-transfer kinetics of photosensitizer-modified proteins. The influence of the Cu-Met-Aro interaction on azurin's physical properties is subtle, and the hallmarks of the azurin blue copper site are maintained. In the Phe15Trp variant, the mutation to Phe15 induces changes in Cu properties that are comparable to replacement of the weak Met ligand. The broader impacts of these widely distributed interactions are discussed.


Assuntos
Azurina , Azurina/química , Cobre/química , Ligantes , Metionina/química , Modelos Moleculares , Proteínas , Triptofano/química , Tirosina/química
5.
Chemistry ; 27(65): 16161-16172, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34595790

RESUMO

The incorporation of a redox-active nickel salen complex into supramolecular structures was explored via coordination-driven self-assembly with homobimetallic ruthenium complexes (bridged by oxalato or 5,8-dihydroxy-1,4-naphthoquinato ligands). The self-assembly resulted in the formation of a discrete rectangle using the oxalato complex and either a rectangle or a catenane employing the larger naphthoquinonato complex. The formation of the interlocked self-assembly was determined to be solvent and concentration dependent. The electronic structure and stability of the oxidized metallacycles was probed using electrochemical experiments, UV-Vis-NIR absorption, EPR spectroscopy and DFT calculations, confirming ligand radical formation. Exciton coupling of the intense near-infrared (NIR) ligand radical intervalence charge transfer (IVCT) bands provided further confirmation of the geometric and electronic structures in solution.


Assuntos
Etilenodiaminas , Rutênio , Níquel , Oxirredução
6.
Chemistry ; 27(38): 9839-9849, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33878230

RESUMO

Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19 F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2 -substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19 F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19 F MRI suggests hypoxia-targeting theranostic applications by redox activation.


Assuntos
Cobre , Compostos Organometálicos , Núcleo Celular , Citotoxinas , Células HeLa , Humanos , Hipóxia , Ligantes , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/farmacologia
7.
Inorg Chem ; 60(22): 16895-16905, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34719930

RESUMO

The ligand electronics of salen manganese nitride complexes directly influence the locus of oxidation and, thus, the reactivity of the resulting oxidized species. This work investigates the influence of tert-butoxy, isopropoxy, and methoxy substituents on the electronics of salen manganese nitride species and includes the first documentation of the para Hammett value for the tert-butoxy substituent (σpara = -0.13 ± 0.03). Each alkoxy-substituted complex undergoes metal-based oxidation to form manganese(VI), and the kinetics of bimolecular homocoupling to form N2 were assessed by cyclic voltammetry. Bis-oxidation of the manganese complexes was investigated at low temperature using cyclic voltammery and UV-vis-near-IR spectroscopy, and in combination with theoretical calculations, plausible electronic structures of the dications are provided.

8.
Inorg Chem ; 57(24): 15247-15261, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30495936

RESUMO

Organometallic Ru(II)-cymene complexes linked to ferrocene (Fc) via nitrogen heterocycles have been synthesized and studied as cytotoxic agents. These compounds are analogues of Ru(II)-arene piano-stool anticancer complexes such as RAPTA-C. The Ru center was coordinated by pyridine, imidazole, and piperidine with 0-, 1-, or 2-carbon bridges to Fc to give six bimetallic, dinuclear compounds, and the properties of these complexes were compared with their non-Fc-functionalized parent compounds. Crystal structures for five of the compounds, their Ru-cymene parent compounds, and an unusual trinuclear compound were determined. Cyclic voltammetry was used to determine the formal MIII/II potentials of each metal center of the Ru-cymene-Fc complexes, with distinct one-electron waves observed in each case. The Fc-functionalized complexes were found to exhibit good cytotoxicity against HT29 human colon adenocarcinoma cells, whereas the parent compounds were inactive. Similarly, antibacterial activity from the Ru-cymene-Fc compounds was observed against Bacillus subtilis, but not from the unfunctionalized complexes. In both cases, the IC50 values correlated quantitatively with the Fc+/0 reduction potentials. This is consistent with more facile oxidation to give ferrocenium, and subsequent generation of toxic reactive oxygen species, leading to greater cytotoxicity. The antioxidant properties of the complexes were quantified by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. EC50 values indicate that linking of the Ru and Fc centers promotes antioxidant activity.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Compostos Organometálicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Bacillus subtilis/efeitos dos fármacos , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Células HT29 , Humanos , Metalocenos/química , Metalocenos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Oxirredução , Picratos/química , Rutênio/química , Rutênio/farmacologia
9.
Chem Sci ; 15(6): 2211-2220, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332824

RESUMO

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.

10.
ACS Omega ; 8(22): 19798-19806, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305310

RESUMO

Redox-active amino acid residues are at the heart of biological electron-transfer reactions. They play important roles in natural protein functions and are implicated in disease states (e.g., oxidative-stress-associated disorders). Tryptophan (Trp) is one such redox-active amino acid residue, and it has long been known to serve a functional role in proteins. Broadly speaking, there is still much to learn about the local features that make some Trp redox active and others inactive. Herein, we describe a new protein model system where we investigate how a methionine (Met) residue proximal to a redox-active Trp affects its reactivity and spectroscopy. We use an artificial variant of azurin from Pseudomonas aeruginosa to produce these models. We employ a series of UV-visible spectroscopy, electrochemistry, electron paramagnetic resonance, and density functional theory experiments to demonstrate the effect that placing Met near Trp radicals has in the context of redox proteins. The introduction of Met proximal to Trp lowers its reduction potential by ca. 30 mV and causes clear shifts in the optical spectra of the corresponding radicals. While the effect may be small, it is significant enough to be a way for natural systems to tune Trp reactivity.

11.
Chem Commun (Camb) ; 59(5): 623-626, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36537324

RESUMO

The application of CF3-labeled Ru(III) anticancer complexes to magnetic resonance (MR) imaging of tumour tissues is demonstrated. By combining anatomical chemical-shift selective (CHESS) imaging with 19F chemical-shift imaging (CSI) MR methods, we show that oxidation states and ligand-exchange processes of the complexes can be spatially encoded. Measurements on different tissue models, including a human breast adenocarcinoma tumour, validate the application of these complexes as MR theranostics for the sensing and targeting of hypoxia.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Oxirredução
12.
Chem Commun (Camb) ; 55(43): 6082-6085, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31066383

RESUMO

The design and synthesis of a supramolecular square was achieved by coordination-driven assembly of redox-active nickel(ii) salen linkers and (ethylenediamine)palladium(ii) nodes. The tetrameric geometry of the supramolecular structure was confirmed via MS, NMR, and electrochemical experiments. While oxidation of the monomeric metalloligand Schiff-base affords a Ni(iii) species, oxidation of the coordination-driven assembly results in ligand radical formation.

13.
Dalton Trans ; 46(24): 7750-7757, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28589994

RESUMO

The first examples for the rhenium-catalysed hydroboration of aldehydes, ketones and aldimines, including heteroaromatic quinoline, are reported herein. Reactions are remarkably chemoselective and tolerant of several functional groups. A wide array of rhenium complexes were efficient pre-catalysts for these hydroborations, including new low-valent complexes of the formula [Re(N-N)(CO)3(L)]X (N-N = bipy derivative, L = labile ligand/solvent, and X = [BArF4]- and [B(3,5-di-tBu-cat)2]-), which have been characterized fully including an X-ray diffraction study for [Re(bipy)(CO)3(quin)][BArF4] (2). A new silver spiroboronate ester Ag[B(3,5-di-tBu-cat)2](NCCH3)3 (3) was prepared and characterized fully, including an X-ray diffraction study, and used to make one of the new rhenium complexes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa