Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Infect Immun ; 92(2): e0051523, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38206007

RESUMO

Rickettsia parkeri is a pathogen of public health concern and transmitted by the Gulf Coast tick, Amblyomma maculatum. Rickettsiae are obligate intracellular bacteria that enter and replicate in diverse host cells. Rickettsial outer membrane protein B (OmpB) functions in bacterial adhesion, invasion, and avoidance of cell-autonomous immunity in mammalian cell infection, but the function of OmpB in arthropod infection is unknown. In this study, the function of R. parkeri OmpB was evaluated in the tick host. R. parkeri wild-type and R. parkeri ompBSTOP::tn (non-functional OmpB) were capillary fed to naïve A. maculatum ticks to investigate dissemination in the tick and transmission to vertebrates. Ticks exposed to R. parkeri wild-type had greater rickettsial loads in all organs than ticks exposed to R. parkeri ompBSTOP::tn at 12 h post-capillary feeding and after 1 day of feeding on host. In rats that were exposed to R. parkeri ompBSTOP::tn-infected ticks, dermal inflammation at the bite site was less compared to R. parkeri wild-type-infected ticks. In vitro, R. parkeri ompBSTOP::tn cell attachment to tick cells was reduced, and host cell invasion of the mutant was initially reduced but eventually returned to the level of R. parkeri wild-type by 90 min post-infection. R. parkeri ompBSTOP::tn and R. parkeri wild-type had similar growth kinetics in the tick cells, suggesting that OmpB is not essential for R. parkeri replication in tick cells. These results indicate that R. parkeri OmpB functions in rickettsial attachment and internalization to tick cells and pathogenicity during tick infection.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Ratos , Animais , Carrapatos/microbiologia , Ixodidae/microbiologia , Proteínas de Membrana , Mamíferos
2.
PLoS Pathog ; 18(12): e1011045, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542675

RESUMO

Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.


Assuntos
Ctenocephalides , Felis , Infecções por Rickettsia , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Humanos , Sifonápteros/genética , Sifonápteros/microbiologia , Rickettsia felis/genética , Infecções por Rickettsia/microbiologia , Ctenocephalides/genética , Ctenocephalides/microbiologia , Fenótipo
3.
BMC Biol ; 18(1): 70, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560686

RESUMO

BACKGROUND: Fleas (Insecta: Siphonaptera) are small flightless parasites of birds and mammals; their blood-feeding can transmit many serious pathogens (i.e., the etiological agents of bubonic plague, endemic and murine typhus). The lack of flea genome assemblies has hindered research, especially comparisons to other disease vectors. Accordingly, we sequenced the genome of the cat flea, Ctenocephalides felis, an insect with substantial human health and veterinary importance across the globe. RESULTS: By combining Illumina and PacBio sequencing of DNA derived from multiple inbred female fleas with Hi-C scaffolding techniques, we generated a chromosome-level genome assembly for C. felis. Unexpectedly, our assembly revealed extensive gene duplication across the entire genome, exemplified by ~ 38% of protein-coding genes with two or more copies and over 4000 tRNA genes. A broad range of genome size determinations (433-551 Mb) for individual fleas sampled across different populations supports the widespread presence of fluctuating copy number variation (CNV) in C. felis. Similarly, broad genome sizes were also calculated for individuals of Xenopsylla cheopis (Oriental rat flea), indicating that this remarkable "genome-in-flux" phenomenon could be a siphonapteran-wide trait. Finally, from the C. felis sequence reads, we also generated closed genomes for two novel strains of Wolbachia, one parasitic and one symbiotic, found to co-infect individual fleas. CONCLUSION: Rampant CNV in C. felis has dire implications for gene-targeting pest control measures and stands to complicate standard normalization procedures utilized in comparative transcriptomics analysis. Coupled with co-infection by novel Wolbachia endosymbionts-potential tools for blocking pathogen transmission-these oddities highlight a unique and underappreciated disease vector.


Assuntos
Ctenocephalides/genética , Variações do Número de Cópias de DNA , Duplicação Gênica , Tamanho do Genoma , Animais , Cromossomos , Feminino , Masculino
4.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30642897

RESUMO

Tick vectors are capable of transmitting several rickettsial species to vertebrate hosts, resulting in various levels of disease. Studies have demonstrated the transmissibility of both rickettsial pathogens and novel Rickettsia species or strains with unknown pathogenicity to vertebrate hosts during tick blood meal acquisition; however, the quantitative nature of transmission remains unknown. We tested the hypothesis that if infection severity is a function of the rickettsial load delivered during tick transmission, then a more virulent spotted fever group (SFG) Rickettsia species is transmitted at higher levels during tick feeding. Using Amblyomma maculatum cohorts infected with Rickettsia parkeri or "Candidatus Rickettsia andeanae," a quantitative PCR (qPCR) assay was employed to quantify rickettsiae in tick salivary glands and saliva, as well as in the vertebrate hosts at the tick attachment site over the duration of tick feeding. Significantly greater numbers of R. parkeri than of "Ca Rickettsia andeanae" rickettsiae were present in tick saliva and salivary glands and in the vertebrate hosts at the feeding site during tick feeding. Microscopy demonstrated the presence of both rickettsial species in tick salivary glands, and immunohistochemical analysis of the attachment site identified localized R. parkeri, but not "Ca Rickettsia andeanae," in the vertebrate host. Lesions were also distinct and more severe in vertebrate hosts exposed to R. parkeri than in those exposed to "Ca Rickettsia andeanae." The specific factors that contribute to the generation of a sustained rickettsial infection and subsequent disease have yet to be elucidated, but the results of this study suggest that the rickettsial load in ticks and during transmission may be an important element.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodidae/microbiologia , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/transmissão , Animais , Vetores Aracnídeos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Alimentar , Feminino , Humanos , Ixodidae/fisiologia , Masculino , Ninfa/microbiologia , Rickettsia/genética , Rickettsia/isolamento & purificação , Saliva/microbiologia , Glândulas Salivares/microbiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia
5.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581194

RESUMO

The Gram-negative obligate intracellular bacterium Rickettsia parkeri is an emerging tick-borne human pathogen. Recently, R. parkeri Sca2 and RickA have been implicated in adherence and actin-based motility in vertebrate host cell infection models; however, the rickettsia-derived factors essential to tick infection are unknown. Using R. parkeri mutants lacking functional Sca2 or RickA to compare actin polymerization, replication, and cell-to-cell spread in vitro, similar phenotypes in tick and mammalian cells were observed. Specifically, actin polymerization in cultured tick cells is controlled by the two separate proteins in a time-dependent manner. To assess the role of Sca2 and RickA in dissemination in the tick host, Rickettsia-free Amblyomma maculatum, the natural vector of R. parkeri, was exposed to wild-type, R. parkeri rickA::tn, or R. parkeri sca2::tn bacteria, and individual tick tissues, including salivary glands, midguts, ovaries, and hemolymph, were analyzed at 12 h and after continued bloodmeal acquisition for 3 or 7 days postexposure. Initially, ticks exposed to wild-type R. parkeri had the highest rickettsial load across all organs; however, rickettsial loads decreased and wild-type rickettsiae were cleared from the ovaries at 7 days postexposure. In contrast, ticks exposed to R. parkeririckA::tn or R. parkerisca2::tn had comparatively lower rickettsial loads, but bacteria persisted in all organs for 7 days. These data suggest that while RickA and Sca2 function in actin polymerization in tick cells, the absence of these proteins did not change dissemination patterns within the tick vector.


Assuntos
Vetores Aracnídeos/microbiologia , Ataxina-2/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ixodidae/microbiologia , Rickettsia/fisiologia , Animais , Ataxina-2/genética , Proteínas de Bactérias/genética , Linhagem Celular
6.
Infect Immun ; 83(3): 1048-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547795

RESUMO

Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3'-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases.


Assuntos
Proteínas de Artrópodes/genética , Dermacentor/genética , Interações Hospedeiro-Patógeno , Rickettsia/fisiologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Dermacentor/metabolismo , Dermacentor/microbiologia , Ensaios Enzimáticos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
7.
Mol Ecol ; 24(21): 5475-89, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26414611

RESUMO

Cat fleas (Ctenocephalides felis) are known as the primary vector and reservoir of Rickettsia felis, the causative agent of flea-borne spotted fever; however, field surveys regularly report molecular detection of this infectious agent from other blood-feeding arthropods. The presence of R. felis in additional arthropods may be the result of chance consumption of an infectious bloodmeal, but isolation of viable rickettsiae circulating in the blood of suspected vertebrate reservoirs has not been demonstrated. Successful transmission of pathogens between actively blood-feeding arthropods in the absence of a disseminated vertebrate infection has been verified, referred to as cofeeding transmission. Therefore, the principal route from systemically infected vertebrates to uninfected arthropods may not be applicable to the R. felis transmission cycle. Here, we show both intra- and interspecific transmission of R. felis between cofeeding arthropods on a vertebrate host. Analyses revealed that infected cat fleas transmitted R. felis to naïve cat fleas and rat fleas (Xenopsylla cheopis) via fleabite on a nonrickettsemic vertebrate host. Also, cat fleas infected by cofeeding were infectious to newly emerged uninfected cat fleas in an artificial system. Furthermore, we utilized a stochastic model to demonstrate that cofeeding is sufficient to explain the enzootic spread of R. felis amongst populations of the biological vector. Our results implicate cat fleas in the spread of R. felis amongst different vectors, and the demonstration of cofeeding transmission of R. felis through a vertebrate host represents a novel transmission paradigm for insect-borne Rickettsia and furthers our understanding of this emerging rickettsiosis.


Assuntos
Ctenocephalides/microbiologia , Infecções por Rickettsia/transmissão , Rickettsia felis , Xenopsylla/microbiologia , Animais , Insetos Vetores/microbiologia , Masculino , Camundongos Endogâmicos C3H , Modelos Biológicos
8.
J Med Entomol ; 51(4): 855-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25118419

RESUMO

Rickettsia parkeri Luckman (Rickettsiales: Rickettsiaceae), a member of the spotted fever group of Rickettsia, is the tick-borne causative agent of a newly recognized, eschar-associated rickettsiosis. Because of its relatively recent designation as a pathogen, few studies have examined the pathogenesis of transmission of R. parkeri to the vertebrate host. To further elucidate the role of tick feeding in rickettsial infection of vertebrates, nymphal Amblyomma maculatum Koch (Acari: Ixodidae) were fed on C3H/HeJ mice intradermally inoculated with R. parkeri (Portsmouth strain). The ticks were allowed to feed to repletion, at which time samples were taken for histopathology, immunohistochemistry (IHC), quantitative polymerase chain reaction (qPCR) for rickettsial quantification, and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of Itgax, Mcp1, and Il1beta. The group of mice that received intradermal inoculation of R. parkeri with tick feeding displayed significant increases in rickettsial load and IHC staining, but not in cytokine expression, when compared with the group of mice that received intradermal inoculation of R. parkeri without tick feeding. Tick feeding alone was associated with histopathologic changes in the skin, but these changes, and particularly vascular pathology, were more pronounced in the skin of mice inoculated previously with R. parkeri and followed by tick feeding. The marked differences in IHC staining and qPCR for the R. parkeri with tick feeding group strongly suggest an important role for tick feeding in the early establishment of rickettsial infection in the skin.


Assuntos
Ixodidae/microbiologia , Infecções por Rickettsia/transmissão , Rickettsia/fisiologia , Animais , Vetores Artrópodes/fisiologia , Temperatura Corporal , Comportamento Alimentar , Ixodidae/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Necrose , Ninfa/fisiologia , Ratos , Ratos Sprague-Dawley , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/patologia , Pele/microbiologia , Pele/patologia , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Dermatopatias Bacterianas/transmissão
9.
Curr Res Insect Sci ; 5: 100080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623392

RESUMO

Fleas are morphologically unique ectoparasites that are hardly mistaken for any other insect. Most flea species that feed on humans and their companion animals, including the cat flea (Ctenocephalides felis), have medical and veterinary importance. Besides facilitating blood acquisition, salivary biomolecules can modulate pathogen transmission. Thus, dissection of salivary glands is essential for comprehensive studies on disease vectors like the cat flea. Herein, we present the pictorial dissection protocol assisting future research targeting individual flea organs, for revealing their roles in vector competence and physiology. We provide a comprehensive guide, allowing researchers, even with limited practical experience, to successfully perform microdissection for collecting cat flea salivary glands. Furthermore, the protocol does not require expensive, sophisticated equipment and can be accomplished with routinely available tools. We illustrated expected results with morphological changes of salivary glands upon blood feeding as well as fluorescently stained these organs.

10.
Vector Borne Zoonotic Dis ; 24(4): 201-213, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38422214

RESUMO

Purpose: Flea-borne rickettsioses, collectively referred to as a term for etiological agents Rickettsia felis, Rickettsia typhi, and RFLOs (R. felis-like organisms), has become a public health concern around the world, specifically in the United States. Due to a shared arthropod vector (the cat flea) and clinical signs, discriminating between Rickettsia species has proven difficult. While the effects of microbial coinfections in the vector can result in antagonistic or synergistic interrelationships, subsequently altering potential human exposure and disease, the impact of bacterial interactions within flea populations remains poorly defined. Methods: In this study, in vitro and in vivo systems were utilized to assess rickettsial interactions in arthropods. Results: Coinfection of both R. felis and R. typhi within a tick-derived cell line indicated that the two species could infect the same cell, but distinct growth kinetics led to reduced R. felis growth over time, regardless of infection order. Sequential flea coinfections revealed the vector could acquire both Rickettsia spp. and sustain coinfection for up to 2 weeks, but rickettsial loads in coinfected fleas and feces were altered during coinfection. Conclusion: Altered rickettsial loads during coinfection suggest R. felis and R. typhi interactions may enhance the transmission potential of either agent. Thus, this study provides a functional foundation to disentangle transmission events propelled by complex interspecies relationships during vector coinfections.


Assuntos
Doenças do Gato , Coinfecção , Ctenocephalides , Felis , Infestações por Pulgas , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Humanos , Gatos , Rickettsia typhi , Ctenocephalides/microbiologia , Coinfecção/veterinária , Sifonápteros/microbiologia , Infestações por Pulgas/veterinária
11.
J Med Entomol ; 50(5): 1089-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24180114

RESUMO

Ticks serve as both vectors and the reservoir hosts capable of transmitting spotted fever group Rickettsia by horizontal and vertical transmission. Persistent maintenance of Rickettsia species in tick populations is dependent on the specificity of the tick and Rickettsia relationship that limits vertical transmission of particular Rickettsia species, suggesting host-derived mechanisms of control. Tick-derived molecules are differentially expressed in a tissue-specific manner in response to rickettsial infection; however, little is known about tick response to specific rickettsial species. To test the hypothesis that tissue-specific tick-derived molecules are uniquely responsive to rickettsial infection, a bioassay to characterize the tick tissue-specific response to different rickettsial species was used. Whole organs of Dermacentor variabilis (Say) were exposed to either Rickettsia montanensis or Rickettsia amblyommii, two Rickettsia species common, or absent, in field-collected D. variabilis, respectively, for 1 and 12 h and harvested for quantitative real time-polymerase chain reaction assays of putative immune-like tick-derived factors. The results indicated that tick genes are differently expressed in a temporal and tissue-specific manner. Genes encoding glutathione S-transferase 1 (dvgst1) and Kunitz protease inhibitor (dvkpi) were highly expressed in midgut, and rickettsial exposure downregulated the expression of both genes. Two other genes encoding glutathione S-transferase 2 (dvgst2) and beta-thymosin (dvpbeta-thy) were highly expressed in ovary, with dvbeta-thy expression significantly downregulated in ovaries exposed to R. montanensis, but not R. amblyommii, at 12-h postexposure, suggesting a selective response. Deciphering the tissue-specific molecular interactions between tick and Rickettsia will enhance our understanding of the key mechanisms that mediate rickettsial infection in ticks.


Assuntos
Proteínas de Artrópodes/genética , Dermacentor/genética , Dermacentor/microbiologia , Regulação da Expressão Gênica , Rickettsia/fisiologia , Animais , Aprotinina , Proteínas de Artrópodes/metabolismo , Dermacentor/imunologia , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Especificidade de Órgãos , Inibidores de Proteases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Timosina/genética , Timosina/metabolismo
12.
PLoS One ; 18(1): e0279070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649293

RESUMO

The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.


Assuntos
Ctenocephalides , Infestações por Pulgas , Rickettsia felis , Animais , Feminino , Ctenocephalides/genética , Ctenocephalides/microbiologia , Proteômica , Glândulas Salivares/metabolismo , Saliva/química , Rickettsia felis/fisiologia , Infestações por Pulgas/veterinária
13.
Int J Biol Macromol ; 253(Pt 1): 126545, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652342

RESUMO

Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.


Assuntos
Ixodidae , Canais de Potássio Corretores do Fluxo de Internalização , Carrapatos , Animais , Amblyomma , Ixodidae/metabolismo , Canais KATP/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carrapatos/metabolismo , Proteínas e Peptídeos Salivares , Trifosfato de Adenosina/metabolismo
14.
Infect Immun ; 80(5): 1846-52, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392926

RESUMO

Rickettsia parkeri, a member of the spotted fever group Rickettsia, is the causative agent of American boutonneuse fever in humans. Despite the increased recognition of human cases, limited information is available regarding the infection of invertebrate and vertebrate hosts for this emerging tick-borne disease. Toward the development of a viable transmission model and to further characterize the pathology associated with R. parkeri infection, inbred mouse strains (A/J, BALB/c, C3H/HeJ, and C3H/HeN) were intravenously and intradermally inoculated with 10(5) low-passage-number R. parkeri (Portsmouth strain), and infection, gross pathology, and histopathology were scored. Additionally, a quantitative real-time PCR (qPCR) was performed to estimate rickettsial load in heart, lung, spleen, and liver tissues of infected mice at 19 days postinoculation. Of the A/J, BALB/c, and C3H/HeN mice, none displayed universal pathology consistent with sustained infection. Compared to age-matched control mice, the intravenously inoculated C3H/HeJ mice exhibited marked facial edema and marked splenomegaly upon gross examination, while the intradermally inoculated mice developed characteristic eschar-like lesions. The C3H/HeJ mice also exhibited the greatest concentrations of rickettsial DNA from heart, lung, liver, and spleen samples when examined by qPCR. The similarity of the pathology of human disease and sustained infection suggests that the C3H/HeJ strain of mice is a promising candidate for subsequent experiments to examine the tick transmission, dissemination, and pathology of R. parkeri rickettsiosis.


Assuntos
Predisposição Genética para Doença , Infecções por Rickettsia/genética , Infecções por Rickettsia/microbiologia , Rickettsia/classificação , Animais , DNA Bacteriano/isolamento & purificação , Inflamação , Contagem de Leucócitos , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Rickettsia/patologia , Pele/patologia , Especificidade da Espécie , Fatores de Tempo
15.
Emerg Infect Dis ; 18(6): 995-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22607743

RESUMO

The association between companion animals and tick-borne rickettsial disease has long been recognized and can be essential to the emergence of rickettsioses. We tested whole blood from dogs in temporary shelters by using PCR for rickettsial infections. Of 93 dogs, 12 (13%) were positive for Rickettsia parkeri, an emerging tick-borne rickettsiosis.


Assuntos
Doenças do Cão/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia/genética , Doenças Transmitidas por Carrapatos/veterinária , Animais , Proteínas da Membrana Bacteriana Externa/genética , Doenças do Cão/epidemiologia , Cães/microbiologia , Feminino , Louisiana/epidemiologia , Masculino , Prevalência , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Análise de Sequência de DNA , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
16.
Insect Mol Biol ; 21(2): 197-204, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22221256

RESUMO

Alpha catenin is a cytoskeleton protein that acts as a regulator of actin rearrangement by forming an E-cadherin adhesion complex. In Dermacentor variabilis, a putative α-catenin (Dvα-catenin) was previously identified as differentially regulated in ovaries of ticks chronically infected with Rickettsia montanensis. To begin characterizing the role(s) of Dvα-catenin during rickettsial infection, the full-length Dvα-catenin cDNA was cloned and analysed. Comparative sequence analysis demonstrates a 3069-bp cDNA with a 2718-bp open reading frame with a sequence similar to Ixodes scapularisα-catenin. A portion of Dvα-catenin is homologous to the vinculin-conserved domain containing a putative actin-binding region and ß-catenin-binding and -dimerization regions. Quantitative reverse-transcription PCR analysis demonstrated that Dvα-catenin is predominantly expressed in tick ovaries and is responsive to tick feeding. The tissue-specific gene expression analysis of ticks exposed to Rickettsia demonstrates that Dvα-catenin expression was significantly downregulated 12 h after exposure to R. montanensis, but not in Rickettsia amblyommii-exposed ovaries, compared with Rickettsia-unexposed ticks. Studying tick-derived molecules associated with rickettsial infection will provide a better understanding of the transmission dynamics of tick-borne rickettsial diseases.


Assuntos
Proteínas de Artrópodes/metabolismo , Vetores Artrópodes/metabolismo , Dermacentor/metabolismo , Rickettsia/fisiologia , alfa Catenina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Vetores Artrópodes/genética , Dermacentor/genética , Dermacentor/microbiologia , Comportamento Alimentar , Feminino , Expressão Gênica , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Infecções por Rickettsia/transmissão , Análise de Sequência de DNA , alfa Catenina/genética
17.
PLoS Negl Trop Dis ; 16(6): e0010576, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759517

RESUMO

Rickettsia felis is an emerging etiological agent of rickettsioses worldwide. The cosmopolitan cat flea (Ctenocephalides felis) is the primary vector of R. felis, but R. felis has also been reported in other species of hematophagous arthropods including ticks and mosquitoes. Canines can serve as a bacteremic host to infect fleas under laboratory conditions, yet isolation of R. felis from the blood of a vertebrate host in nature has not been realized. Cofeeding transmission is an efficient mechanism for transmitting rickettsiae between infected and uninfected fleas; however, the mechanism of transmission among different orders and classes of arthropods is not known. The potential for R. felis transmission between infected fleas and tick (Dermacentor variabilis) and mosquito (Anopheles quadrimaculatus) hosts was examined via cofeeding bioassays. Donor cat fleas infected with R. felis transmitted the agent to naïve D. variabilis nymphs via cofeeding on a rat host. Subsequent transstadial transmission of R. felis from the engorged nymphs to the adult ticks was observed with reduced prevalence in adult ticks. Using an artificial host system, An. quadrimaculatus exposed to a R. felis-infected blood meal acquired rickettsiae and maintained infection over 12 days post-exposure (dpe). Similar to ticks, mosquitoes were able to acquire R. felis while cofeeding with infected cat fleas on rats infection persisting in the mosquito for up to 3 dpe. The results indicate R. felis-infected cat fleas can transmit rickettsiae to both ticks and mosquitoes via cofeeding on a vertebrate host, thus providing a potential avenue for the diversity of R. felis-infected arthropods in nature.


Assuntos
Artrópodes , Ctenocephalides , Culicidae , Infestações por Pulgas , Infecções por Rickettsia , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Ctenocephalides/microbiologia , Cães , Mosquitos Vetores , Ratos , Infecções por Rickettsia/epidemiologia , Sifonápteros/microbiologia
18.
Mol Ecol ; 20(21): 4577-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21967477

RESUMO

Rickettsia felis is a rickettsial pathogen primarily associated with the cat flea, Ctenocephalides felis. Although laboratory studies have confirmed that R. felis is maintained by transstadial and transovarial transmission in C. felis, distinct mechanisms of horizontal transmission of R. felis among cat fleas are undefined. Based on the inefficient vertical transmission of R. felis by cat fleas and the detection of R. felis in a variety of haematophagous arthropods, we hypothesize that R. felis is horizontally transmitted between cat fleas. Towards testing this hypothesis, flea transmission of R. felis via a bloodmeal was assessed weekly for 4 weeks. Rhodamine B was used to distinguish uninfected recipient and R. felis-infected donor fleas in a rickettsial horizontal transmission bioassay, and quantitative real-time PCR assay was used to measure transmission frequency; immunofluorescence assay also confirmed transmission. Female fleas acquired R. felis infection more readily than male fleas after feeding on a R. felis-infected bloodmeal for 24 h (69.3% and 43.3%, respectively) and both Rickettsia-uninfected recipient male and female fleas became infected with R. felis after cofeeding with R. felis-infected donor fleas (3.3-40.0%). Distinct bioassays were developed to further determine that R. felis was transmitted from R. felis-infected to uninfected fleas during cofeeding and copulation. Vertical transmission of R. felis by infected fleas was not demonstrated in this study. The demonstration of horizontal transmission of R. felis between cat fleas has broad implications for the ecology of R. felis rickettsiosis.


Assuntos
Infecções por Rickettsia/transmissão , Rickettsia felis/patogenicidade , Sifonápteros/microbiologia , Animais , Gatos , Feminino , Masculino
19.
Pathog Dis ; 79(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33770162

RESUMO

The cat flea, Ctenocephalides felis, is an arthropod vector capable of transmitting several human pathogens including Rickettsia species. Earlier studies identified Rickettsia felis in the salivary glands of the cat flea and transmission of rickettsiae during arthropod feeding. The saliva of hematophagous insects contains multiple biomolecules with anticlotting, vasodilatory and immunomodulatory activities. Notably, the exact role of salivary factors in the molecular interaction between flea-borne rickettsiae and their insect host is still largely unknown. To determine if R. felis modulates gene expression in the cat flea salivary glands, cat fleas were infected with R. felis and transcription patterns of selected salivary gland-derived factors, including antimicrobial peptides and flea-specific antigens, were assessed. Salivary glands were microdissected from infected and control cat fleas at different time points after exposure and total RNA was extracted and subjected to reverse-transcriptase quantitative PCR for gene expression analysis. During the experimental 10-day feeding period, a dynamic change in gene expression of immunity-related transcripts and salivary antigens between the two experimental groups was detected. The data indicated that defensin-2 (Cf-726), glycine-rich antimicrobial peptide (Cf-83), salivary antigens (Cf-169 and Cf-65) and deorphanized peptide (Cf-75) are flea-derived factors responsive to rickettsial infection.


Assuntos
Ctenocephalides , Infecções por Rickettsia , Rickettsia felis , Glândulas Salivares , Animais , Peptídeos Antimicrobianos/análise , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Ctenocephalides/genética , Ctenocephalides/metabolismo , Ctenocephalides/microbiologia , Feminino , Masculino , Infecções por Rickettsia/genética , Infecções por Rickettsia/metabolismo , Infecções por Rickettsia/microbiologia , Rickettsia felis/genética , Rickettsia felis/metabolismo , Rickettsia felis/patogenicidade , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Transcriptoma/genética
20.
Trends Parasitol ; 37(8): 734-746, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34162522

RESUMO

Although Rickettsia species are molecularly detected among a wide range of arthropods, vector competence becomes an imperative aspect of understanding the ecoepidemiology of these vector-borne diseases. The synergy between vector homeostasis and rickettsial invasion, replication, and release initiated within hours (insects) and days (ticks) permits successful transmission of rickettsiae. Uncovering the molecular interplay between rickettsiae and their vectors necessitates examining the multifaceted nature of rickettsial virulence and vector infection tolerance. Here, we highlight the biological differences between tick- and insect-borne rickettsiae and the factors facilitating the incidence of rickettsioses. Untangling the complex relationship between rickettsial genetics, vector biology, and microbial interactions is crucial in understanding the intricate association between rickettsiae and their vectors.


Assuntos
Vetores Artrópodes/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Rickettsia/fisiologia , Animais , Rickettsia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa