Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764827

RESUMO

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Assuntos
Genoma Viral , Doenças dos Primatas/virologia , Febre Amarela/veterinária , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Zoonoses/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Genômica , Humanos , Filogenia , Filogeografia , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/transmissão , Primatas/virologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/transmissão
2.
Genet Sel Evol ; 52(1): 47, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787772

RESUMO

BACKGROUND: Bias has been reported in genetic or genomic evaluations of several species. Common biases are systematic differences between averages of estimated and true breeding values, and their over- or under-dispersion. In addition, comparing accuracies of pedigree versus genomic predictions is a difficult task. This work proposes to analyse biases and accuracies in the genetic evaluation of milk yield in Manech Tête Rousse dairy sheep, over several years, by testing five models and using the estimators of the linear regression method. We tested models with and without genomic information [best linear unbiased prediction (BLUP) and single-step genomic BLUP (SSGBLUP)] and using three strategies to handle missing pedigree [unknown parent groups (UPG), UPG with QP transformation in the [Formula: see text] matrix (EUPG) and metafounders (MF)]. METHODS: We compared estimated breeding values (EBV) of selected rams at birth with the EBV of the same rams obtained each year from the first daughters with phenotypes up to 2017. We compared within and across models. Finally, we compared EBV at birth of the rams with and without genomic information. RESULTS: Within models, bias and over-dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope of the dispersion: 0.95 to 0.99) except for model SSGBLUP-EUPG that presented an important over-dispersion (0.87). The estimates of accuracies confirm that the addition of genomic information increases the accuracy of EBV in young rams. The smallest bias was observed with BLUP-MF and SSGBLUP-MF. When we estimated dispersion by comparing a model with no markers to models with markers, SSGBLUP-MF showed a value close to 1, indicating that there was no problem in dispersion, whereas SSGBLUP-EUPG and SSGBLUP-UPG showed a significant under-dispersion. Another important observation was the heterogeneous behaviour of the estimates over time, which suggests that a single check could be insufficient to make a good analysis of genetic/genomic evaluations. CONCLUSIONS: The addition of genomic information increases the accuracy of EBV of young rams in Manech Tête Rousse. In this population that has missing pedigrees, the use of UPG and EUPG in SSGBLUP produced bias, whereas MF yielded unbiased estimates, and we recommend its use. We also recommend assessing biases and accuracies using multiple truncation points, since these statistics are subject to random variation across years.


Assuntos
Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Ovinos/genética , Animais , Viés , Cruzamento/normas , Feminino , Estudo de Associação Genômica Ampla/normas , Masculino , Leite/normas , Linhagem , Polimorfismo Genético , Locos de Características Quantitativas , Ovinos/fisiologia
3.
JDS Commun ; 2(1): 31-34, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36337289

RESUMO

Decreases in genetic variance over generations reduce future genetic gain. We studied the evolution of genetic variance in the dairy sheep breed Manech Tête Rousse, which has been selected for increasingly complex objectives, including, in this order, milk yield, milk contents, scrapie resistance, and somatic cell score. We estimated base population genetic variance and genetic variance by sex and per year of birth from 1981 to 2014. The data consisted of 1,842,295 milk yield records (from 1978 to 2017) and a pedigree including 530,572 females (96% of them with records) and 3,798 artificial insemination males. As a measure of drift, we computed average relationships for each cohort from which we derived expected reduction of variance due to increased relationships. The difference between observed and expected reductions in genetic variances is the reduction in genetic variance due to selection. Average relationships increased steadily but slowly in both sexes. For females, genetic variance reduced with time until a plateau was reached at around 90% of the initial genetic variance. The reduction due to relationships (roughly 3% cumulated in 30 yr) was smaller than that due to selection (roughly 10% across the last years). A smaller loss due to selection was seen in recent years, possibly due to a change in selection objectives. These results agree well with theoretical expectations. The pattern of the evolution of genetic variance in males was similar to that for females but with a stronger reduction because of strong selection of AI males at birth. We conclude that the reductions in genetic variation due to selection and drift agree with expectations, and none of the reductions are very strong in this population because of control of inbreeding and smooth changes in selection objectives over time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa