RESUMO
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genéticaRESUMO
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder marked by progressive motor neuron degeneration and muscle denervation. A recent transcriptomic study integrating a wide range of human ALS samples revealed that the upregulation of p53, a downstream target of inflammatory stress, is commonly detected in familial and sporadic ALS cases by a mechanism linked to a transactive response DNA-binding protein 43 (TDP-43) dysfunction. In this study, we show that prolonged interferon-gamma (IFNγ) treatment of human induced pluripotent stem cell-derived spinal motor neurons results in a severe cytoplasmic aggregation of TDP-43. TDP-43 dysfunction resulting from either IFNγ exposure or an ALS-associated TDP-43 mutation was associated with the activation of the p53 pathway. This was accompanied by the hyperactivation of neuronal firing, followed by the complete loss of their electrophysiological function. Through a comparative single-cell transcriptome analysis, we have identified significant alterations in ALS-associated genes in motor neurons exposed to IFNγ, implicating their direct involvement in ALS pathology. Interestingly, IFNγ was found to induce significant levels of programmed death-ligand 1 (PD-L1) expression in motor neurons without affecting the levels of any other immune checkpoint proteins. This finding suggests a potential role of excessive PD-L1 expression in ALS development, given that PD-L1 was recently reported to impair neuronal firing ability in mice. Our findings suggest that exposing motor neurons to IFNγ could directly derive ALS pathogenesis, even without the presence of the inherent genetic mutation or functional glia component. Furthermore, this study provides a comprehensive list of potential candidate genes for future immunotherapeutic targets with which to treat sporadic forms of ALS, which account for 90% of all reported cases.
Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Antígeno B7-H1/metabolismo , Biomarcadores , Proteínas de Ligação a DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxidos/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Actinas/genética , Actinas/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
PURPOSE OF REVIEW: Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Arritmias Cardíacas/induzido quimicamente , Diferenciação Celular , Desenvolvimento de Medicamentos , Humanos , Miócitos Cardíacos/fisiologia , Engenharia TecidualRESUMO
Recent development of novel therapies has improved mobility and quality of life for people suffering from inheritable neuromuscular disorders. Despite this progress, the majority of neuromuscular disorders are still incurable, in part due to a lack of predictive models of neuromuscular junction (NMJ) breakdown. Improvement of predictive models of a human NMJ would be transformative in terms of expanding our understanding of the mechanisms that underpin development, maintenance, and disease, and as a testbed with which to evaluate novel therapeutics. Induced pluripotent stem cells (iPSCs) are emerging as a clinically relevant and non-invasive cell source to create human NMJs to study synaptic development and maturation, as well as disease modeling and drug discovery. This review will highlight the recent advances and remaining challenges to generating an NMJ capable of eliciting contraction of stem cell-derived skeletal muscle in vitro. We explore the advantages and shortcomings of traditional NMJ culturing platforms, as well as the pioneering technologies and novel, biomimetic culturing systems currently in use to guide development and maturation of the neuromuscular synapse and extracellular microenvironment. Then, we will explore how this NMJ-in-a-dish can be used to study normal assembly and function of the efferent portion of the neuromuscular arc, and how neuromuscular disease-causing mutations disrupt structure, signaling, and function.
Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Junção Neuromuscular/fisiologia , Engenharia Tecidual/métodos , Animais , Humanos , Dispositivos Lab-On-A-Chip , Neurônios Motores/fisiologia , Junção Neuromuscular/citologia , Células-Tronco/fisiologiaRESUMO
Multiple clinical trials employing recombinant adeno-associated viral (rAAV) vectors have been initiated for neuromuscular disorders, including Duchenne and limb-girdle muscular dystrophies, spinal muscular atrophy, and recently X-linked myotubular myopathy (XLMTM). Our previous work on a canine model of XLMTM showed that a single rAAV8-cMTM1 systemic infusion corrected structural abnormalities within the muscle and restored contractile function, with affected dogs surviving more than 4 years post injection. This remarkable therapeutic efficacy presents a unique opportunity to identify the downstream molecular drivers of XLMTM pathology and to what extent the whole muscle transcriptome is restored to normal after gene transfer. Herein, RNA-sequencing was used to examine the transcriptomes of the Biceps femoris and Vastus lateralis in a previously described canine cohort that showed dose-dependent clinical improvements after rAAV8-cMTM1 gene transfer. Our analysis confirmed several dysregulated genes previously observed in XLMTM mice but also identified transcripts linked to XLMTM pathology. We demonstrated XLMTM transcriptome remodeling and dose-dependent normalization of gene expression after gene transfer and created metrics to pinpoint potential biomarkers of disease progression and correction.
Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Transcriptoma , Animais , Biomarcadores , Modelos Animais de Doenças , Cães , Dosagem de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transdução GenéticaRESUMO
The growing field of regenerative rehabilitation has great potential to improve clinical outcomes for individuals with disabilities. However, the science to elucidate the specific biological underpinnings of regenerative rehabilitation-based approaches is still in its infancy and critical questions regarding clinical translation and implementation still exist. In a recent roundtable discussion from International Consortium for Regenerative Rehabilitation stakeholders, key challenges to progress in the field were identified. The goal of this article is to summarize those discussions and to initiate a broader discussion among clinicians and scientists across the fields of regenerative medicine and rehabilitation science to ultimately progress regenerative rehabilitation from an emerging field to an established interdisciplinary one. Strategies and case studies from consortium institutions-including interdisciplinary research centers, formalized courses, degree programs, international symposia, and collaborative grants-are presented. We propose that these strategic directions have the potential to engage and train clinical practitioners and basic scientists, transform clinical practice, and, ultimately, optimize patient outcomes.
Assuntos
Medicina Regenerativa/tendências , Reabilitação/tendências , Certificação , Congressos como Assunto , Currículo , Bolsas de Estudo , Humanos , Medicina Regenerativa/educação , Reabilitação/educaçãoRESUMO
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to ß-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.
Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Cardiomiopatias/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Biomimética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Acoplamento Excitação-Contração/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Especificidade por SubstratoRESUMO
One of the most profound advances in the last decade of biomedical research has been the development of human induced pluripotent stem cell (hiPSC) models for identification of disease mechanisms and drug discovery. Human iPSC technology has the capacity to revolutionize healthcare and the realization of personalized medicine, but differentiated tissues derived from stem cells come with major criticisms compared to native tissue, including variability in genetic backgrounds, a lack of functional maturity, and differences in epigenetic profiles. It is widely believed that increasing complexity will lead to improved clinical relevance, so methods are being developed that go from a single cell type to various levels of 2-D coculturing and 3-D organoids. As this inevitable trend continues, it will be essential to thoroughly understand the strengths and weaknesses of more complex models and to develop criteria for assessing biological relevance. We believe the payoff of robust, high-throughput, clinically meaningful human stem cell models could be the elimination of often inadequate animal models. To facilitate this transition, we will look at the challenges and strategies of complex model development through the lens of neurodegeneration to encapsulate where the disease-in-a-dish field currently is and where it needs to go to improve.
Assuntos
Alternativas ao Uso de Animais , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/genética , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologiaRESUMO
X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.
Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Animais , Biópsia , Dependovirus/classificação , Modelos Animais de Doenças , Progressão da Doença , Cães , Marcha , Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/farmacocinética , Imunidade Celular , Imunidade Humoral , Estimativa de Kaplan-Meier , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/mortalidade , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Recuperação de Função Fisiológica , Reflexo , Testes de Função Respiratória , Distribuição Tecidual , Transgenes/genética , Transgenes/imunologia , Resultado do TratamentoRESUMO
Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review.
Assuntos
Terapia Genética , Miopatias Congênitas Estruturais/terapia , Animais , Técnicas de Transferência de Genes , Humanos , Proteínas Musculares/genética , Miopatias Congênitas Estruturais/genéticaRESUMO
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
RESUMO
Engineered heart tissues (EHTs) have been shown to be a valuable platform for disease investigation and therapeutic testing by increasing human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturity and better recreating the native cardiac environment. The protocol detailed in this chapter describes the generation of miniaturized EHTs (mEHTs) incorporating hiPSC-CMs and human stromal cells in a fibrin hydrogel. This platform utilizes an array of silicone posts designed to fit in a standard 96-well tissue culture plate. Stromal cells and hiPSC-CMs are cast in a fibrin matrix suspended between two silicone posts, forming an mEHT that produces synchronous muscle contractions. The platform presented here has the potential to be used for high throughput characterization and screening of disease phenotypes and novel therapeutics through measurements of the myocardial function, including contractile force and calcium handling, and its compatibility with immunostaining.
Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Hidrogéis/química , Diferenciação Celular , Fibrina/metabolismo , Células Cultivadas , Técnicas de Cultura de Células/métodos , Células Estromais/citologia , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/instrumentaçãoRESUMO
Mutations in the DMD gene lead to Duchenne muscular dystrophy, a severe X-linked neuromuscular disorder that manifests itself as young boys acquire motor functions. DMD is typically diagnosed at 2 to 4 years of age, but the absence of dystrophin negatively impacts muscle structure and function before overt symptoms appear in patients, which poses a serious challenge in the optimization of standards of care. In this report, we investigated the early consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Here, dystrophin deficiency was linked to marked dysregulations of cell junction protein families involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.
RESUMO
Mutations in the DMD gene lead to Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys as they acquire motor functions. DMD is typically diagnosed at 2-4 years of age, but the absence of dystrophin has negative impacts on skeletal muscles before overt symptoms appear in patients, which poses a serious challenge in current standards of care. Here, we investigated the consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Dystrophin deficiency was linked to marked dysregulations of cell junction proteins involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.
RESUMO
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.
Assuntos
Biomarcadores , Proteína HMGB1 , Distrofia Muscular de Duchenne , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Distrofina/metabolismo , Distrofina/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genéticaRESUMO
Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.
RESUMO
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFß. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.
RESUMO
Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research.
Assuntos
Carcinogênese/genética , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/genética , Amplificação de Genes , Oncogenes , Aneuploidia , Animais , Carcinogênese/metabolismo , Instabilidade Cromossômica , Aberrações Cromossômicas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Rim/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cariotipagem Espectral/métodos , Transcrição Gênica , Transcriptoma , Bexiga Urinária/citologiaRESUMO
Insulin therapy for type 1 diabetes does not prevent serious long-term complications including vascular disease, neuropathy, retinopathy and renal failure. Stem cells, including amniotic fluid-derived stem (AFS) cells - highly expansive, multipotent and nontumorigenic cells - could serve as an appropriate stem cell source for ß-cell differentiation. In the current study we tested whether nonhuman primate (nhp)AFS cells ectopically expressing key pancreatic transcription factors were capable of differentiating into a ß-cell-like cell phenotype in vitro. nhpAFS cells were obtained from Cynomolgus monkey amniotic fluid by immunomagnetic selection for a CD117 (c-kit)-positive population. RT-PCR for endodermal and pancreatic lineage-specific markers was performed on AFS cells after adenovirally transduced expression of PDX1, NGN3 and MAFA. Expression of MAFA was sufficient to induce insulin mRNA expression in nhpAFS cell lines, whereas a combination of MAFA, PDX1 and NGN3 further induced insulin expression, and also induced the expression of other important endocrine cell genes such as glucagon, NEUROD1, NKX2.2, ISL1 and PCSK2. Higher induction of these and other important pancreatic genes was achieved by growing the triply infected AFS cells in media supplemented with a combination of B27, betacellulin and nicotinamide, as well as culturing the cells on extracellular matrix-coated plates. The expression of pancreatic genes such as NEUROD1, glucagon and insulin progressively decreased with the decline of adenovirally expressed PDX1, NGN3 and MAFA. Together, these experiments suggest that forced expression of pancreatic transcription factors in primate AFS cells induces them towards the pancreatic lineage.