Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536037

RESUMO

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
2.
Pediatr Res ; 95(3): 647-659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935884

RESUMO

BACKGROUND: Fetal growth restriction (FGR) increases risk for development of obesity and type 2 diabetes. Using a mouse model of FGR, we tested whether metabolic outcomes were exacerbated by high-fat diet challenge or associated with fecal microbial taxa. METHODS: FGR was induced by maternal calorie restriction from gestation day 9 to 19. Control and FGR offspring were weaned to control (CON) or 45% fat diet (HFD). At age 16 weeks, offspring underwent intraperitoneal glucose tolerance testing, quantitative MRI body composition assessment, and energy balance studies. Total microbial DNA was used for amplification of the V4 variable region of the 16 S rRNA gene. Multivariable associations between groups and genera abundance were assessed using MaAsLin2. RESULTS: Adult male FGR mice fed HFD gained weight faster and had impaired glucose tolerance compared to control HFD males, without differences among females. Irrespective of weaning diet, adult FGR males had depletion of Akkermansia, a mucin-residing genus known to be associated with weight gain and glucose handling. FGR females had diminished Bifidobacterium. Metabolic changes in FGR offspring were associated with persistent gut microbial changes. CONCLUSION: FGR results in persistent gut microbial dysbiosis that may be a therapeutic target to improve metabolic outcomes. IMPACT: Fetal growth restriction increases risk for metabolic syndrome later in life, especially if followed by rapid postnatal weight gain. We report that a high fat diet impacts weight and glucose handling in a mouse model of fetal growth restriction in a sexually dimorphic manner. Adult growth-restricted offspring had persistent changes in fecal microbial taxa known to be associated with weight, glucose homeostasis, and bile acid metabolism, particularly Akkermansia, Bilophilia and Bifidobacteria. The gut microbiome may represent a therapeutic target to improve long-term metabolic outcomes related to fetal growth restriction.


Assuntos
Diabetes Mellitus Tipo 2 , Retardo do Crescimento Fetal , Humanos , Feminino , Adulto , Masculino , Lactente , Retardo do Crescimento Fetal/metabolismo , Dieta Hiperlipídica , Aumento de Peso , Glucose , Desenvolvimento Fetal
3.
J Nutr ; 153(4): 988-998, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37061344

RESUMO

BACKGROUND: Sestrins (SESN1-3) act as proximal sensors in leucine-induced activation of the protein kinase mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), a key regulator of cell growth and metabolism. OBJECTIVE: In the present study, the hypothesis that SESNs also mediate glucose-induced activation of mTORC1 was tested. METHODS: Rats underwent overnight fasting, and in the morning, either saline or a glucose solution (4 g⋅kg-1 BW/10 mL⋅kg-1) was administered by oral gavage; mTORC1 activation in the tibialis anterior muscle was assessed. To further assess the mechanism through which glucose promotes mTORC1 activation, wild-type (WT) HEK293T and HEK293T cells lacking either all 3 SESNs (SESNTKO) or hexokinase 2 (HK2KO) were deprived of glucose, followed by glucose addback, and mTORC1 activation was assessed. In addition, glucose-induced changes in the association of the SESNs with components of the GAP activity toward the Rags (GATOR2) complex and with hexokinase 2 (HK2) were assessed by co-immunoprecipitation. One- and two-way ANOVA with Tukey post hoc comparisons were used. RESULTS: Glucose administration to fasted rats promoted mTORC1 activation. Similarly, glucose readdition (GluAB) to the medium of glucose-deprived WT cells also promoted mTORC1 activation. By contrast, SESNTKO cells demonstrated attenuated mTORC1 activation following GluAB compared with WT cells. Interestingly, HK2 associated with all 3 SESNs in a glucose-dependent manner, i.e., HK2 abundance in SESN immunoprecipitates was high in cells deprived of glucose and decreased in response to GluAB. Moreover, similar to SESNTKO cells, the sensitivity of mTORC1 to GluAB was attenuated in HK2KO cells compared with WT cells. CONCLUSIONS: The results of this study demonstrate that the SESNs and HK2 play important roles in glucose-induced mTORC1 activation in HEK293T cells. However, unlike leucine-induced mTORC1 activation, the effect was independent of the changes in SESN-GATOR2 interaction, and instead, it was associated with alterations in the association of SESNs with HK2.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Ratos , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Leucina/farmacologia , Sestrinas/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Glucose/farmacologia
4.
Breast Cancer Res ; 24(1): 42, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725493

RESUMO

BACKGROUND: Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS: We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS: In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS: Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/prevenção & controle , Feminino , Humanos , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Ovariectomia , Pós-Menopausa , Ratos , Roedores , Carga Tumoral , Aumento de Peso
5.
BMC Genomics ; 22(1): 686, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548019

RESUMO

BACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods. RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes. CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.


Assuntos
Anti-Infecciosos , Solo , Bacillus , Clostridium/genética , Filogenia
6.
Food Microbiol ; 95: 103687, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397617

RESUMO

Bacterial species belonging to the genus Clostridium have been recognized as causative agents of blown pack spoilage (BPS) in vacuum packed meat products. Whole-genome sequencing of six New Zealand psychrotolerant clostridia isolates derived from three meat production animal types and their environments was performed to examine their roles in BPS. Comparative genome analyses have provided insight into the genomic diversity and physiology of these bacteria and divides clostridia into two separate species clusters. BPS-associated clostridia encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) that enable them to utilize the intramuscular carbohydrate stores and facilitate sporulation. In total, 516 glycoside hydrolases (GHs), 93 carbohydrate esterases (CEs), 21 polysaccharide lyases (PLs), 434 glycosyl transferases (GTs) and 211 carbohydrate-binding protein modules (CBM) with predicted activities involved in the breakdown and transport of carbohydrates were identified. Clostridia genomes have different patterns of CAZyme families and vary greatly in the number of genes within each CAZy category, suggesting some level of functional redundancy. These results suggest that BPS-associated clostridia occupy similar environmental niches but apply different carbohydrate metabolism strategies to be able to co-exist and cause meat spoilage.


Assuntos
Clostridium/genética , Clostridium/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Clostridium/classificação , Esterases/genética , Esterases/metabolismo , Embalagem de Alimentos , Inocuidade dos Alimentos , Genoma Bacteriano , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Produtos da Carne/análise , Nova Zelândia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Vácuo
7.
Proc Natl Acad Sci U S A ; 115(12): 3138-3143, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507217

RESUMO

Dietary guidelines for obesity typically focus on three food groups (carbohydrates, fat, and protein) and caloric restriction. Intake of noncaloric nutrients, such as salt, are rarely discussed. However, recently high salt intake has been reported to predict the development of obesity and insulin resistance. The mechanism for this effect is unknown. Here we show that high intake of salt activates the aldose reductase-fructokinase pathway in the liver and hypothalamus, leading to endogenous fructose production with the development of leptin resistance and hyperphagia that cause obesity, insulin resistance, and fatty liver. A high-salt diet was also found to predict the development of diabetes and nonalcoholic fatty liver disease in a healthy population. These studies provide insights into the pathogenesis of obesity and diabetes and raise the potential for reduction in salt intake as an additional interventional approach for reducing the risk for developing obesity and metabolic syndrome.


Assuntos
Frutose/metabolismo , Leptina/sangue , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Obesidade/induzido quimicamente , Cloreto de Sódio na Dieta/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus/induzido quimicamente , Frutoquinases/genética , Humanos , Leptina/genética , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/metabolismo , Sacarose/efeitos adversos , Sacarose/análogos & derivados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Mammary Gland Biol Neoplasia ; 25(4): 367-387, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33216249

RESUMO

Cells in human milk are an untapped source, as potential "liquid breast biopsies", of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures. We comprehensively characterized 3740 cells from milk samples from two mothers at two weeks postpartum. Most cells (>90%) were luminal MECs (luMECs) expressing lactalbumin alpha and casein beta and positive for keratin 8 and keratin 18. Few cells were keratin 14+ basal MECs and a small immune cell population was present (<10%). Analysis of differential gene expression among clusters identified six potentially distinct luMEC subpopulation signatures, suggesting the potential for subtle functional differences among luMECs, and included one cluster that was positive for both progenitor markers and mature milk transcripts. No expression of pluripotency markers POU class 5 homeobox 1 (POU5F1, encoding OCT4) SRY-box transcription factor 2 (SOX2) or nanog homeobox (NANOG), was observed. These observations were supported by flow cytometric analysis of MECs from mature milk samples from three women with diet-controlled GDM (2-8 mo postpartum), indicating a negligible basal/stem cell population (epithelial cell adhesion molecule (EPCAM)-/integrin subunit alpha 6 (CD49f)+, 0.07%) and a small progenitor population (EPCAM+/CD49f+, 1.1%). We provide a computational framework for others and future studies, as well as report the first milk-derived cells to be analyzed by scRNA-seq. We discuss the clinical potential and current limitations of using milk-derived cells as material for characterizing human mammary physiology.


Assuntos
Biologia Computacional/métodos , Diabetes Gestacional/metabolismo , Lactação/fisiologia , Glândulas Mamárias Humanas/metabolismo , Leite Humano/citologia , Adulto , Diabetes Gestacional/dietoterapia , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Glândulas Mamárias Humanas/citologia , Período Pós-Parto/metabolismo , Gravidez , RNA-Seq/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Célula Única , Células-Tronco/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R171-R183, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551825

RESUMO

Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Ingestão de Energia/fisiologia , Feminino , Masculino , Ratos
10.
Proc Natl Acad Sci U S A ; 114(52): E11293-E11302, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229845

RESUMO

The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin (HTT) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73-line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Ureia/metabolismo , Adulto , Animais , Animais Geneticamente Modificados , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Ovinos , Expansão das Repetições de Trinucleotídeos/genética
11.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151061

RESUMO

BACKGROUND: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. METHODS: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. RESULTS: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. CONCLUSION: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Glaucoma/prevenção & controle , Ácido Cinurênico/farmacologia , Quinurenina 3-Mono-Oxigenase/fisiologia , Traumatismo por Reperfusão/complicações , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glaucoma/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
12.
Am J Physiol Endocrinol Metab ; 316(6): E1136-E1145, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964702

RESUMO

Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRß, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.


Assuntos
Colesterol/metabolismo , Epitélio/metabolismo , Lactação/genética , Receptores X do Fígado/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Lactação/metabolismo , Lipogênese/genética , Receptores X do Fígado/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
13.
Am J Physiol Endocrinol Metab ; 316(5): E977-E986, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912962

RESUMO

Prevalence of obesity is exacerbated by low rates of successful long-term weight loss maintenance (WLM). In part, relapse from WLM to obesity is due to a reduction in energy expenditure (EE) that persists throughout WLM and relapse. Thus, interventions that increase EE might facilitate WLM. In obese mice that were calorically restricted to reduce body weight by ~20%, we manipulated EE throughout WLM and early relapse using intermittent cold exposure (ICE; 4°C, 90 min/day, 5 days/wk, within the last 3 h of the light cycle). EE, energy intake, and spontaneous physical activity were measured during the obese, WLM, and relapse phases. During WLM and relapse, the ICE group expended more energy during the light cycle because of cold exposure but expended less energy in the dark cycle, which led to no overall difference in total daily EE. The compensation in EE appeared to be mediated by activity, whereby the ICE group was more active during the light cycle because of cold exposure but less active during the dark cycle, which led to no overall effect on total daily activity during WLM and relapse. In brown adipose tissue of relapsing mice, the ICE group had greater mRNA expression of Dio2 and protein expression of UCP1 but lower mRNA expression of Prdm16. In summary, these findings indicate that despite robust increases in EE during cold exposures, ICE is unable to alter total daily EE during WLM or early relapse, likely due to compensatory behaviors in activity.


Assuntos
Manutenção do Peso Corporal/fisiologia , Temperatura Baixa , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Termogênese/fisiologia , Aumento de Peso/fisiologia , Redução de Peso/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Obesidade , Fotoperíodo , RNA Mensageiro/metabolismo , Recidiva , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Iodotironina Desiodinase Tipo II
14.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R684-R695, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553623

RESUMO

Exercise is a potent facilitator of long-term weight loss maintenance (WLM), whereby it decreases appetite and increases energy expenditure beyond the cost of the exercise bout. We have previously shown that exercise may amplify energy expenditure through energetically expensive nutrient deposition. Therefore, we investigated the effect of exercise on hepatic de novo lipogenesis (DNL) during WLM and relapse to obesity. Obese rats were calorically restricted with (EX) or without (SED) treadmill exercise (1 h/day, 6 days/wk, 15 m/min) to induce and maintain weight loss. After 6 wk of WLM, subsets of WLM-SED and WLM-EX rats were allowed ad libitum access to food for 1 day to promote relapse (REL). An energy gap-matched group of sedentary, relapsing rats (REL-GM) were provided a diet matched to the positive energy imbalance of the REL-EX rats. During relapse, exercise increased enrichment of hepatic DN-derived lipids and induced hepatic molecular adaptations favoring DNL compared with the gap-matched controls. In the liver, compared with both REL-SED and REL-GM rats, REL-EX rats had lower hepatic expression of genes required for cholesterol biosynthesis; greater hepatic expression of genes that mediate very low-density lipoprotein synthesis and secretion; and greater mRNA expression of Cyp27a1, which encodes an enzyme involved in the biosynthesis of bile acids. Altogether, these data provide compelling evidence that the liver has an active role in exercise-mediated potentiation of energy expenditure during early relapse.


Assuntos
Colesterol/biossíntese , Metabolismo Energético , Lipogênese , Fígado/metabolismo , Obesidade/terapia , Condicionamento Físico Animal , Aumento de Peso , Redução de Peso , Animais , Ácidos e Sais Biliares/biossíntese , Restrição Calórica , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação Enzimológica da Expressão Gênica , Insulina/sangue , Lipogênese/genética , Masculino , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Recidiva , Corrida , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Reproduction ; 157(1): 13-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394704

RESUMO

A number of studies have demonstrated effects of gestational undernutrition on fetal ovarian development and postnatal female fertility. However, the mechanism underlying these effects remains elusive. Using a cohort of animals in which altered gestational nutrition affected indicators of postnatal fertility, this study applies RNAseq to fetal ovaries to identify affected genes and pathways that may underlie the relationship between gestational plane of nutrition and postnatal fertility. Pregnant ewes were exposed to either a maintenance diet or 0.6 of maintenance for the first 55 days of gestation followed by an ad libitum diet. Complementary DNA libraries were constructed from 5 to 6 fetal ovaries from each nutritional group at both days 55 and 75 of gestation and sequenced using Ion Proton. Of approximately 16,000 transcripts, 69 genes were differentially expressed at day 55 and 145 genes differentially expressed at day 75. At both gestational ages, genes expressed preferentially in germ cells were common among the differentially expressed genes. Enriched gene ontology terms included ion transport, nucleic acid binding, protease inhibitor activity and carrier proteins of the albumin family. Affected pathways identified by IPA analysis included LXR/RXR activation, FXR/RXR activation, pathways associated with nitric oxide production and citrullination (by NOS1), vitamin C transport and metabolism and REDOX reactions. The data offer some insights into potential mechanisms underlying the relationship between gestational plane of nutrition and postnatal fertility observed in these animals. In particular, the roles of nitric oxide and protease inhibitors in germ cell development are highlighted and warrant further study.


Assuntos
Feto/metabolismo , Desnutrição/genética , Ovário/embriologia , Ovário/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ovinos , Animais , Feminino , Desenvolvimento Fetal/genética , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Desnutrição/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Ovinos/embriologia , Ovinos/genética , Ovinos/metabolismo
16.
Breast Cancer Res ; 20(1): 50, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898754

RESUMO

BACKGROUND: Obesity and type II diabetes are linked to increased breast cancer risk in postmenopausal women. Patients treated with the antidiabetic drug metformin for diabetes or metabolic syndrome have reduced breast cancer risk, a greater pathologic complete response to neoadjuvant therapy, and improved breast cancer survival. We hypothesized that metformin may be especially effective when targeted to the menopausal transition, as this is a lifecycle window when weight gain and metabolic syndrome increase, and is also when the risk for obesity-related breast cancer increases. METHODS: Here, we used an 1-methyl-1-nitrosourea (MNU)-induced mammary tumor rat model of estrogen receptor (ER)-positive postmenopausal breast cancer to evaluate the long-term effects of metformin administration on metabolic and tumor endpoints. In this model, ovariectomy (OVX) induces rapid weight gain, and an impaired whole-body response to excess calories contributes to increased tumor glucose uptake and increased tumor proliferation. Metformin treatment was initiated in tumor-bearing animals immediately prior to OVX and maintained for the duration of the study. RESULTS: Metformin decreased the size of existing mammary tumors and inhibited new tumor formation without changing body weight or adiposity. Decreased lipid accumulation in the livers of metformin-treated animals supports the ability of metformin to improve overall metabolic health. We also found a decrease in the number of aromatase-positive, CD68-positive macrophages within the tumor microenvironment, suggesting that metformin targets the immune microenvironment in addition to improving whole-body metabolism. CONCLUSIONS: These findings suggest that peri-menopause/menopause represents a unique window of time during which metformin may be highly effective in women with established, or at high risk for developing, breast cancer.


Assuntos
Aromatase/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Metformina/administração & dosagem , Animais , Mama/efeitos dos fármacos , Mama/imunologia , Mama/patologia , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Metilnitrosoureia/toxicidade , Ovariectomia , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/genética , Pós-Menopausa/imunologia , Ratos , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
17.
J Dairy Sci ; 101(11): 10259-10270, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30197143

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease in ruminants, which is characterized by chronic progressive granulomatous enteritis. The infection leads to wasting and weight loss in the animals and eventually death, causing considerable production losses to the agricultural industry worldwide. Currently available ELISA- and PCR-based diagnostic tests have limited sensitivity and specificity during early MAP infection in cattle, suggesting that there is an urgent demand for alternative diagnostic tests. Circulating microRNA (miRNA) have recently gained attention as potential biomarkers for several diseases in humans. However, knowledge and use of miRNA as biomarkers in diseases of ruminants, including Johne's disease, are very limited. Here we used NanoString nCounter technology (NanoString, Seattle, WA), a digital platform for amplification-free and hybridization-based quantitative measurement of miRNA in the sera of noninfected and naturally MAP-infected cattle with different severity of infection. Using probes developed against human miRNA, 26 miRNA were detected in cattle serum; 13 of these miRNA were previously uncharacterized for cattle. Canonical discrimination analysis using 20 miRNA grouped animals into 4 distinct clusters based on their disease status, suggesting that the levels of these miRNA can reflect disease severity. A model was developed using a combination of 4 miRNA (miR-1976, miR-873-3p, miR-520f-3p, and miR-126-3p), which distinguished moderate and severely infected animals from noninfected animals. Our study demonstrated the ability of the NanoString nCounter technology to detect differential expression of circulating miRNA in cattle and contributes to widely growing evidence that miRNA can be used as biomarkers in infectious diseases in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Perfilação da Expressão Gênica/veterinária , MicroRNAs/sangue , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Animais , Biomarcadores/análise , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Sensibilidade e Especificidade
18.
J Neurophysiol ; 117(2): 646-654, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852737

RESUMO

Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY: This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated.


Assuntos
Desidratação/fisiopatologia , Frutoquinases/deficiência , Frutose/farmacologia , Regulação da Expressão Gênica , Hipotálamo , Vasopressinas/metabolismo , Análise de Variância , Animais , Ensaio de Imunoadsorção Enzimática , Frutoquinases/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Temperatura Alta/efeitos adversos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Fatores de Tempo , Vasopressinas/genética , Privação de Água
19.
Zygote ; 25(3): 265-278, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28534463

RESUMO

In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFß, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation.


Assuntos
Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/fisiologia , Trofoblastos/fisiologia , Animais , Bovinos , Ectoderma/fisiologia , Feminino , Fertilização in vitro , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Gravidez , Análise de Componente Principal , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética
20.
J Mammary Gland Biol Neoplasia ; 21(3-4): 131-138, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27796616

RESUMO

Accurate assessment of the long chain polyunsaturated fatty acid (LC-PUFA) content of human milk (HM) provides a powerful means to evaluate the FA nutrient status of breastfed infants. The conventional standard for FA composition analysis of HM is liquid extraction, trans-methylation, and analyte detection resolved by gas chromatography. This standard approach requires fresh or frozen samples, storage in deep freeze, organic solvents, and specialized equipment in processing and analysis. Further, HM collection is often impractical for many studies in the free living environment, particularly for studies in developing countries. In the present study, we compare a novel and more practical approach to sample collection and processing that involves the spotting and drying ~50 µL of HM on a specialized paper stored and transported at ambient temperatures until analysis. Deming regression indicated the two methods aligned very well for all LC-PUFA and the abundant HM FA. Additionally, strong correlations (r > 0.85) were observed for DHA, ARA, EPA, linoleic (LA), and alpha-linolenic acids (ALA), which are of particular interest to the health of the developing infant. Taken together, our data suggest this more practical and inexpensive method of collection, storage, and transport of HM milk samples could dramatically facilitate studies of HM, as well as understanding its lipid composition influences on human health and development.


Assuntos
Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Leite Humano/química , Leite Humano/metabolismo , Cromatografia Gasosa/métodos , Feminino , Humanos , Extração Líquido-Líquido/métodos , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa