Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 224(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34382658

RESUMO

Understanding the resilience of ectotherms to high temperatures is essential because of the influence of climate change on aquatic ecosystems. The ability of species to acclimate to high temperatures may determine whether populations can persist in their native ranges. We examined physiological and molecular responses of juvenile brook trout (Salvelinus fontinalis) to six acclimation temperatures (5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the species to predict acclimation limits. Brook trout exhibited an upregulation of stress-related mRNA transcripts (heat shock protein 90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase 1) and downregulation of transcription factors and osmoregulation-related transcripts (nuclear protein 1, Na+/K+/2Cl- co-transporter-1-a) at temperatures ≥20°C. We then examined the effects of acclimation temperature on metabolic rate (MR) and physiological parameters in fish exposed to an acute exhaustive exercise and air exposure stress. Fish acclimated to temperatures ≥20°C exhibited elevated plasma cortisol and glucose, and muscle lactate after exposure to the acute stress. Fish exhibited longer MR recovery times at 15 and 20°C compared with the 5 and 10°C groups; however, cortisol levels remained elevated at temperatures ≥20°C after 24 h. Oxygen consumption in fish acclimated to 23°C recovered quickest after exposure to acute stress. Standard MR was highest and factorial aerobic scope was lowest for fish held at temperatures ≥20°C. Our findings demonstrate how molecular and physiological responses predict acclimation limits in a freshwater fish as the brook trout in the present study had a limited ability to acclimate to temperatures beyond 20°C.


Assuntos
Aclimatação , Ecossistema , Animais , Resposta ao Choque Térmico , Temperatura Alta , Temperatura , Truta/genética
2.
J Therm Biol ; 99: 102929, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420603

RESUMO

Brook Trout (Salvelinus fontinalis) have been widely introduced throughout the world and are often considered as direct competitors with native salmonid species. Metabolic rate is one metric we can examine to improve our understanding of how well fish perform in different habitats, including across temperature gradients, as metabolism can be directly influenced by environmental temperatures in ectotherms. We estimated the standard metabolic rate, maximum metabolic rate, and aerobic scope of lab-reared juvenile Brook Trout (~1 year) using intermittent-flow respirometry across a range of temperatures (5-23 °C) likely experienced in the wild. We included a diurnal temperature cycle of ±1.5 °C for each treatment temperature to simulate temporal variation observed in natural waterbodies. Standard metabolic rate and maximum metabolic rate both increased with acclimation temperature before appearing to plateau around 20 °C, while mass specific aerobic scope was found to increase from a mean of 287.25 ± 13.03 mg O2·kg-1·h-1 at 5 °C to 384.85 ± 13.31 mg O2·kg-1·h-1 at 15 °C before dropping at higher temperatures. Although a slight peak was found at 15 °C, the generally flat thermal performance curve for aerobic scope suggests Brook Trout are capable of adjusting to a relatively wide range of thermal regimes, appearing to be eurythermal, or a thermal generalist, at least for salmonids. The ability of this population to maintain similar physiological performance across a wide range of temperatures may help explain why Brook Trout succeed in a variety of different thermal habitats.


Assuntos
Metabolismo Energético , Temperatura , Truta/metabolismo , Aerobiose , Animais , Feminino , Masculino
3.
J Fish Biol ; 94(1): 113-121, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30565697

RESUMO

Standard metabolic rates (SMR) were measured empirically for carmine shiner Notropis percobromus and common shiner Luxilus cornutus to develop SMR models that predict metabolic responses of each species under thermal conditions observed in the wild. SMR increased significantly with body mass and rising water temperature, ranging from 0.05 mg O2 h-1 at 10°C to 0.89 mg O2 h-1 at 20°C for N. percobromus weighing 0.6-2.5 g and from 0.11 mg O2 h-1 at 10°C to 0.98 mg O2 h-1 at 20°C for L. cornutus weighing 0.8-6.6 g. SMR models significantly differed between sympatric species on account of differences in model intercepts (RA) and temperature coefficients (RQ), however, the allometric relationships between mass and SMR did not significantly differ between species. Known distribution of N. percobromus and L. cornutus includes the Birch River located in Manitoba, Canada, where N. percobromus is listed as Endangered. Little is known about the physiology of N. percobromus or the species' ability to acclimate or adapt to different environmental conditions. While size differences between species contributed, in part, to differences in SMR predictions for Birch River populations, SMR trends (< 2 mg O2 h-1 ) for individuals weighing 1 g were similar for both species across daily temperatures. Respirometry experiments contributed to developing species-specific SMR models and inform on the effect of natural and anthropogenic stressors, namely water temperature, on the conservation of N. percobromus in this ecosystem.


Assuntos
Cyprinidae/metabolismo , Temperatura , Aclimatação , Animais , Ecossistema , Manitoba , Modelos Biológicos
4.
Conserv Physiol ; 6(1): coy018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692899

RESUMO

Temperature preference for various fishes has often been used as a proxy of optimal temperature for growth and metabolism due to the ease of obtaining preferred temperature zones in laboratory experiments. Several laboratory designs and methods have been proposed to examine preferred temperature zones, however, differences between them (i.e. thermal gradients vs. static temperatures in chambers and duration of acclimation/experimental periods) have led to varying measurements, precluding comparisons between experiments, species and/or life-stages. Juvenile Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi), a species listed as threatened in Alberta and of special concern in British Columbia, were tested in an automated shuttlebox experimental design (Loligo® Systems) to determine average and ranges of temperature preference (Tpref) and occupied temperatures. Previous lab studies suggested that Westslope Cutthroat Trout (WCT) prefer temperatures around 15°C, however, we found that average daytime Tpref for lab-reared juvenile WCT was substantially higher at 18.6°C, with occupied temperatures ranging between 11.9°C and 26.0°C throughout the duration of trials. This seems to indicate that despite constant lab-rearing conditions of 12°C, juvenile WCT may tolerate and even prefer warmer water temperatures. The duration of the acclimation period (1h, 12 h and 24 h) did not have an effect on Tpref, however, Tpref differed significantly for variable trial durations (12 h, 24 h and 36 h). A closer look at thermal trends throughout trials revealed that photoperiod significantly influenced Tpref, as nighttime temperature preference reached consistently 26°C. Collectively, these results suggest that shuttlebox experiments on WCT need to take into account the photoperiod, as behaviour may drive Tpref more so than the duration of acclimation periods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa