Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Comput Appl ; 34(24): 21481-21501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33903785

RESUMO

Emotion is an instinctive or intuitive feeling as distinguished from reasoning or knowledge. It varies over time, since it is a natural instinctive state of mind deriving from one's circumstances, mood, or relationships with others. Since emotions vary over time, it is important to understand and analyze them appropriately. Existing works have mostly focused well on recognizing basic emotions from human faces. However, the emotion recognition from cartoon images has not been extensively covered. Therefore, in this paper, we present an integrated Deep Neural Network (DNN) approach that deals with recognizing emotions from cartoon images. Since state-of-works do not have large amount of data, we collected a dataset of size 8 K from two cartoon characters: 'Tom' & 'Jerry' with four different emotions, namely happy, sad, angry, and surprise. The proposed integrated DNN approach, trained on a large dataset consisting of animations for both the characters (Tom and Jerry), correctly identifies the character, segments their face masks, and recognizes the consequent emotions with an accuracy score of 0.96. The approach utilizes Mask R-CNN for character detection and state-of-the-art deep learning models, namely ResNet-50, MobileNetV2, InceptionV3, and VGG 16 for emotion classification. In our study, to classify emotions, VGG 16 outperforms others with an accuracy of 96% and F1 score of 0.85. The proposed integrated DNN outperforms the state-of-the-art approaches.

2.
Sustain Cities Soc ; 66: 102692, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33425664

RESUMO

Face mask detection had seen significant progress in the domains of Image processing and Computer vision, since the rise of the Covid-19 pandemic. Many face detection models have been created using several algorithms and techniques. The proposed approach in this paper uses deep learning, TensorFlow, Keras, and OpenCV to detect face masks. This model can be used for safety purposes since it is very resource efficient to deploy. The SSDMNV2 approach uses Single Shot Multibox Detector as a face detector and MobilenetV2 architecture as a framework for the classifier, which is very lightweight and can even be used in embedded devices (like NVIDIA Jetson Nano, Raspberry pi) to perform real-time mask detection. The technique deployed in this paper gives us an accuracy score of 0.9264 and an F1 score of 0.93. The dataset provided in this paper, was collected from various sources, can be used by other researchers for further advanced models such as those of face recognition, facial landmarks, and facial part detection process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa