Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(15): e113908, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306086

RESUMO

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are linked in the onset and pathogenesis of numerous diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria during ER stress. The PERK signaling arm of the unfolded protein response (UPR) has emerged as a prominent ER stress-responsive signaling pathway that regulates diverse aspects of mitochondrial biology. Here, we show that PERK activity promotes adaptive remodeling of mitochondrial membrane phosphatidic acid (PA) to induce protective mitochondrial elongation during acute ER stress. We find that PERK activity is required for ER stress-dependent increases in both cellular PA and YME1L-dependent degradation of the intramitochondrial PA transporter PRELID1. These two processes lead to the accumulation of PA on the outer mitochondrial membrane where it can induce mitochondrial elongation by inhibiting mitochondrial fission. Our results establish a new role for PERK in the adaptive remodeling of mitochondrial phospholipids and demonstrate that PERK-dependent PA regulation adapts organellar shape in response to ER stress.


Assuntos
Resposta a Proteínas não Dobradas , eIF-2 Quinase , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Transdução de Sinais
2.
Nat Chem Biol ; 16(10): 1052-1061, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690944

RESUMO

Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease.


Assuntos
Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteostase/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Técnicas de Reprogramação Celular , Descoberta de Drogas/métodos , Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/genética , Desdobramento de Proteína , Proteína 1 de Ligação a X-Box/genética
3.
Nat Commun ; 13(1): 608, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105890

RESUMO

In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Obesos , Medicina Molecular , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética
4.
Cell Rep ; 22(11): 2827-2836, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539413

RESUMO

Endoplasmic reticulum (ER) stress is transmitted to mitochondria and is associated with pathologic mitochondrial dysfunction in diverse diseases. The PERK arm of the unfolded protein response (UPR) protects mitochondria during ER stress through the transcriptional and translational remodeling of mitochondrial molecular quality control pathways. Here, we show that ER stress also induces dynamic remodeling of mitochondrial morphology by promoting protective stress-induced mitochondrial hyperfusion (SIMH). ER-stress-associated SIMH is regulated by the PERK arm of the UPR and activated by eIF2α phosphorylation-dependent translation attenuation. We show that PERK-regulated SIMH is a protective mechanism to prevent pathologic mitochondrial fragmentation and promote mitochondrial metabolism in response to ER stress. These results identify PERK-dependent SIMH as a protective stress-responsive mechanism that regulates mitochondrial morphology during ER stress. Furthermore, our results show that PERK integrates transcriptional and translational signaling to coordinate mitochondrial molecular and organellar quality control in response to pathologic ER insults.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas/imunologia , Doença Aguda , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa