RESUMO
We show that the "sputter patterning" topographical instability is determined by the effects of ion impact-induced prompt atomic redistribution and that erosion--the consensus predominant cause--is essentially irrelevant. We use grazing incidence small angle x-ray scattering to measure in situ the damping of noise or its amplification into patterns via the linear dispersion relation. A model based on the effects of impact-induced redistribution of those atoms that are not sputtered away explains both the observed ultrasmoothening at low angles from normal incidence and the instability at higher angles.
RESUMO
We study the patterns formed on Ar(+) ion-sputtered Si surfaces at room temperature as a function of the control parameters ion energy and incidence angle. We observe the sensitivity of pattern formation to artifacts such as surface contamination and report the procedures we developed to control them. We identify regions in control parameter space where holes, parallel mode ripples and perpendicular mode ripples form, and identify a region where the flat surface is stable. In the vicinity of the boundaries between the stable and pattern-forming regions, called bifurcations, we follow the time dependence from exponential amplification to saturation and examine the amplification rate and the wavelength in the exponential amplification regime. The resulting power laws are consistent with the theory of nonequilibrium pattern formation for a type I (constant wavelength) bifurcation at low angles and for a type II (diverging wavelength) bifurcation at high angles. We discuss the failure of all sputter rippling models to adequately describe these aspects of the simplest experimental system studied, consisting of an elemental, isotropic amorphous surface in the simplest evolution regime of linear stability.
RESUMO
Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Assuntos
Transferência de Energia , Íons/química , Nanoestruturas , Reatores Nucleares/instrumentação , Radiação Ionizante , Modelos Químicos , Simulação de Dinâmica Molecular , Propriedades de SuperfícieRESUMO
We study the patterns formed on ion sputtered Si surfaces as a function of ion energy and incidence angle, and identify a region in parameter space where the flat surface is stable. The boundaries between the stable and pattern-forming regions represent mathematical bifurcations. Our data set exhibits at least two different bifurcation types. We discuss the constraints imposed by these observations on the correct model of long wavelength dynamics of ion sputtered surfaces.