Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nutr Cancer ; 74(7): 2291-2302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34839775

RESUMO

Indian gooseberry (Emblica officinalis Gaertn or Phyllanthus emblica Linn; family Phyllanthaceae) has a recognized history in Indian traditional medicine (Ayurveda). Various therapeutic properties have been attributed to gooseberry as a dietary supplement. Many parts of the plant (fruits, seed, leaves, root, bark, and flowers) possess various activities and are used to treat a range of diseases. This review focuses on the evidence for the cancer-preventive properties of gooseberry, its extracts, and its principal phytochemicals based on studies In Vitro and In Vivo. Most importantly, in multiple rodent models of cancer, treatment with P. emblica was found to prevent tumor incidence, number, and volume at various organ sites. The mechanism(s) implicated in gooseberry-mediated cancer inhibition are diverse and include antioxidants, Phase I and II enzyme modifications, anti-inflammatory action, regulation of the cell cycle, and modulation of oncogenic signaling genes. Studies in humans also indicate that P. emblica can offer various health benefits and synergize with other treatments. This review provides detailed information on the potential use of gooseberry extract as an anticarcinogenic in humans, illuminates the therapeutic applications, and discusses clinical trials.


Assuntos
Neoplasias , Phyllanthus emblica , Ribes , Frutas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Phyllanthus emblica/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348563

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, ß-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, ß-Hydroxy ß-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Modelos Animais de Doenças , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Humanos , Camundongos
3.
Mol Carcinog ; 58(10): 1908-1918, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313401

RESUMO

Gastrin signaling mediated through cholecystokinin-2 receptor (CCK2R) and its downstream molecules is altered in pancreatic cancer. CCK2R antagonists, YF476 (netazepide) and JNJ-26070109, were tested systematically for their effect on pancreatic intraepithelial neoplasia (PanIN) progression to pancreatic ductal adenocarcinoma (PDAC) in KrasG12D mice. After dose selection using wild-type mice, six-week-old p48Cre/+ -LSL-KrasG12D (22-24 per group) genetically engineered mice (GEM) were fed AIN-76A diets containing 0, 250, or 500 ppm JNJ-26070109 or YF-476 for 38 weeks. At termination, pancreata were collected, weighed, and evaluated for PanINs and PDAC. Results demonstrated that control-diet-fed mice showed 69% (males) and 33% (females) incidence of PDAC. Administration of low and high dose JNJ-26070109 inhibited the incidence of PDAC by 88% and 71% (P < .004) in male mice and by 100% and 24% (P > .05) in female mice, respectively. Low and high dose YF476 inhibited the incidence of PDAC by 74% (P < .02) and 69% (P < .02) in male mice and by 45% and 33% (P > .05) in female mice, respectively. Further, transcriptome analysis showed downregulation of Cldn1, Sstr1, Apod, Gkn1, Siglech, Cyp2c44, Bnc1, Fmo2, 623169, Kcne4, Slc27a6, Cma1, Rho GTPase activating protein 18, and Gpr85 genes in JNJ-26070109-treated mice compared with untreated mice. YF476-treated mouse pancreas showed downregulation of Riks, Zpbp, Ntf3, Lrrn4, Aass, Skint3, Kcnb1, Dgkb, Ddx60, and Aspn gene expressions compared with untreated mouse pancreas. Overall, JNJ-26070109 showed better chemopreventive efficacy than YF476. However, caution is recommended when selecting doses, as the agents appeared to exhibit gender-specific effects.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptor de Colecistocinina B/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Benzodiazepinonas/farmacologia , Carcinoma in Situ , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Quimioprevenção/métodos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinoxalinas/farmacologia , Receptor de Colecistocinina B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
4.
Invest New Drugs ; 36(4): 561-570, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29273857

RESUMO

Development of cancer chemoprevention compounds requires enhanced consideration for toxicity and route of administration because the target population is healthy. The small molecule drug, SHetA2 (NSC 726189), exhibited in vivo chemoprevention activity and lack of toxicity when administered by oral gavage. Our objective was to determine if a dietary formulation of SHetA2 could achieve effective tissue drug levels without toxicity. C57bl/6 J mice were monitored on modified American Institute of Nutrition (AIN)76A diet mixed with SHetA2 in a 3:1 ratio with Kolliphor HS15, a self-emulsifying drug delivery system (SEDDS) to deliver 37.5, 62.5, 125, 187 or 250 mg SHetA2/kg/day. Blood and tissues were evaluated after 1, 3 and 6 weeks. The 187 mg/kg/day dose was identified as optimal based on achievement of maximum blood and tissue drug levels in the effective micromolar range without evidence of toxicity. The 250 mg/kg/day group exhibited lower drug levels and the highest intestinal drug content suggesting that an upper limit of intestinal absorption had been surpassed. Only this highest dose resulted in liver and kidney function tests that were outside of the normal range, and significant reduction of cyclin D1 protein in normal cervical tissue. SHetA2 reduced cyclin D1 to greater extents in cancer compared to non-cancer cell cultures. Given this differential effect, optimal chemoprevention without toxicity would be expected to occur at doses that reduced cyclin D1 in neoplastic, but not in normal tissues. These findings support further development of SHetA2 as a chemoprevention agent and potential food additive.


Assuntos
Antineoplásicos/farmacologia , Cromanos/farmacologia , Tionas/farmacologia , Administração Oral , Animais , Quimioprevenção/métodos , Sistemas de Liberação de Medicamentos/métodos , Emulsificantes/química , Feminino , Alimentos Formulados , Camundongos , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096840

RESUMO

Substantial efforts are underway for prevention of early stages or recurrence of colorectal cancers (CRC) or new polyp formation by chemoprevention strategies. Several epidemiological, clinical and preclinical studies to date have supported the chemopreventive potentials of several targeted drug classes including non-steroidal anti-inflammatory drugs (NSAIDs) (aspirin, naproxen, sulindac, celecoxib, and licofelone), statins and other natural agents-both individually, and in combinations. Most preclinical trials although were efficacious, only few agents entered clinical trials and have been proven to be potential chemopreventive agents for colon cancer. However, there are limitations for these agents that hinder their approval by the food and drug administration for chemoprevention use in high-risk individuals and in patients with early stages of CRC. In this review, we update the recent advancement in pre-clinical and clinical development of selected anti-inflammatory agents (aspirin, naproxen, sulindac, celecoxib, and licofelone) and their combinations for further development as novel colon cancer chemopreventive drugs. We provide further new perspectives from this old research, and insights into precision medicine strategies to overcome unwanted side-effects and overcoming strategies for colon cancer chemoprevention.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aspirina/uso terapêutico , Celecoxib/uso terapêutico , Quimioprevenção/métodos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Naproxeno/uso terapêutico , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia
6.
Mol Pharm ; 11(8): 2948-53, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24988047

RESUMO

Aminopeptidase N (APN; CD13; EC 3.4.11.2) is a zinc-dependent membrane-bound exopeptidase that catalyzes the removal of N-terminal amino acids from peptides. APN is known to be highly expressed on renal cortical proximal tubules. APN expression levels are markedly decreased under the influence of nephrotoxins and in the tumor regions of renal cancers. Thus, molecular imaging of kidney APN expression could provide pathophysiological information about kidneys noninvasively. Probestin is a potent APN inhibitor and binds to APN. Abdominal SPECT imaging was conducted at 1 h postinjection of (99m)Tc-probestin in a group of 12 UPII-SV40T transgenic and wild-type mice. UPII-SV40T mice spontaneously develop urothelial carcinoma in situ and invasive transitional cell carcinoma (TCC) that invade kidneys. Histopathology and immunohistochemistry analysis were used to confirm the presence of tumor and to evaluate APN expression in kidney. Radioactivity in normal tissue regions of renal cortex was clearly visible in SPECT images, whereas tumor regions of renal cortex displayed significantly lower or no radioactivity uptake. Histopathological analysis of kidney sections showed normal morphology for both renal pelvic and cortical regions in wild-type mice and abnormal morphology in some transgenic mice. Proliferating cell nuclear antigen staining confirmed the presence of tumor in those abnormal regions. Immunohistochemical analysis of kidney sections using anti-CD13 antibody showed significantly lower APN expression in tumor regions compared to normal regions. Results obtained in this study demonstrate the potential use of (99m)Tc-probestin SPECT as a novel technique for noninvasive imaging of kidney APN expression.


Assuntos
Antígenos CD13/metabolismo , Rim/diagnóstico por imagem , Oligopeptídeos/química , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias da Bexiga Urinária/genética , Urotélio/diagnóstico por imagem , Alanina/química , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Peptídeo Hidrolases/química , Peptídeos/química , Radioisótopos/química
7.
Cells ; 13(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273033

RESUMO

Bladder cancer (BCa) is one of the most lethal genitourinary malignancies owing to its propensity for recurrence and poor survival. The biochemical pathway, signal transducer and activator of transcription 3 (STAT3), has gained significance as a molecular pathway that promotes proliferation, invasion, and chemoresistance. In this study, we explored the targeting of STAT3 with TTI-101 and SH5-07 in BCa and elucidated the mechanisms in three-dimensional (3D) spheroid and organoid models. We optimized the growth of spheroids from human, rat, and mouse BCa cell lines (J82, NBT-II, and MB49 respectively) and organoids from BBN (N-butyl-N-(4-hydroxybutyl)-nitrosamine)-induced rat bladder tumors. Cell viability was assessed using MTT and trypan blue assays. Intracellular ATP production, ROS production, and calcium AM (CA)/EtBr staining were used to measure the spheroid and organoid inhibition and mitochondrial function. Western blot analysis was performed to evaluate the pharmacodynamic markers involved in cell proliferation, apoptosis, cancer stem cells (CSCs), and STAT3 signaling in BCa. We found that targeting STAT3 (using TTI-101 and SH5-07) significantly reduced the proliferation of BCa spheroids and organoids, which was accompanied by decreased expression of pSTAT3, Cyclin D1, and PCNA. Our data also demonstrated that treatment with STAT3 inhibitors induced ROS production and cell death in BCa spheroids and organoids. STAT3 inhibition-induced cell death was associated with the activation of caspase 3/7 and PARP cleavage. Moreover, TTI-101 and SH5-07 target cancer stem cells by downregulating the expression of CD44 and CD133 in 3D models. This study provides the first evidence for the prevention of BCa with small-molecule inhibitors TTI-101 and SH5-07 via suppression of CSCs and STAT3 signaling.


Assuntos
Sobrevivência Celular , Fator de Transcrição STAT3 , Esferoides Celulares , Neoplasias da Bexiga Urinária , Fator de Transcrição STAT3/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ratos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia
8.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568816

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are promising colorectal cancer (CRC) chemopreventive drugs; however, to overcome NSAIDs' associated side effects, there is a need to develop safer and efficacious approaches. The present study was designed to evaluate (i) the efficacy of nitric-oxide releasing (NO)-Sulindac as compared to Sulindac; (ii) whether NO-Sulindac is superior to Sulindac in enhancing low-dose difluoromethylornithine (DFMO)-induced chemopreventive efficacy, and (iii) assessing the key biomarkers associated with colon tumor inhibition by these combinations. In F344 rats, colonic tumors were induced by azoxymethane (AOM). At the adenoma stage (13 weeks post AOM), groups of rats were fed the experimental diets containing 0 ppm, 500 ppm DFMO, 150 ppm Sulindac, and 200 ppm NO-Sulindac, individually or in combinations, for 36 weeks. Colon tumors were evaluated histopathologically and assayed for expression levels of proliferative, apoptotic, and inflammatory markers. Results suggest that (except for NO-Sulindac alone), DFMO, Sulindac individually, and DFMO combined with Sulindac or NO-Sulindac significantly suppressed AOM-induced adenocarcinoma incidence and multiplicities. DFMO and Sulindac suppressed adenocarcinoma multiplicity by 63% (p < 0.0001) and 51% (p < 0.0011), respectively, whereas NO-Sulindac had a modest effect (22.8%, p = 0.09). Combinations of DFMO plus Sulindac or NO-Sulindac suppressed adenocarcinoma incidence (60%, p < 0.0001; 50% p < 0.0004), and multiplicity (81%, p < 0.0001; 62%, p < 0.0001). Rats that were fed the combination of DFMO plus Sulindac showed significant inhibition of tumor cell proliferation and induction of apoptosis. In addition, enhancement of p21, Bax, and caspases; downregulation of Ki-67, VEGF, and ß-catenin; and modulation of iNOS, COX-2, and ODC activities in colonic tumors were observed. These observations show that a lower-dose of DFMO and Sulindac significantly enhanced CRC chemopreventive efficacy when compared to NO-Sulindac alone, and the combination of DFMO and NO-Sulindac was modestly efficacious as compared to DFMO alone.

9.
Neoplasia ; 45: 100939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813000

RESUMO

Inflammation and obesity are two major factors that promote Colorectal cancer (CRC). Our recent data suggests that interleukin (IL)-23, is significantly elevated in CRC tumors and correlates with patient obesity, tumor grade and survival. Thus, we hypothesize that obesity and CRC may be linked via inflammation and IL-23 may be a potential target for intervention in high-risk patients. TCGA dataset and patient sera were evaluated for IL-23A levels. IL-23A [IL-23 p19-/-] knockout (KO) mice were crossed to Apcmin/+ mice and progeny were fed low-fat or high-fat diets. At termination intestines were evaluated for tumorigenesis. Tumors, serum, and fecal contents were analyzed for protein biomarkers, cytokines, and microbiome profile respectively. IL-23A levels are elevated in the sera of patients with obesity and colon tumors. Genetic ablation of IL-23A significantly suppressed colonic tumor multiplicity (76-96 %) and incidence (72-95 %) in male and female mice. Similarly, small-intestinal tumor multiplicity and size were also significantly reduced in IL-23A KO mice. IL-23A knockdown in Apcmin/+ mice fed high-fat diet, also resulted in significant suppression of colonic (50-58 %) and SI (41-48 %) tumor multiplicity. Cytokine profiling showed reduction in several circulating pro-inflammatory cytokines including loss of IL-23A. Biomarker analysis suggested reduced tumor cell proliferation and immune modulation with an increase in tumor-infiltrating CD4+ and CD8+ T-lymphocytes in the IL-23A KO mice compared to controls. Fecal microbiome analysis revealed potentially beneficial changes in the bacterial population profile. In summary, our data indicates a tumor promoting role for IL-23 in CRC including diet-induced obesity. With several IL-23 targeted therapies in clinical trials, there is a great potential for targeting this cytokine for CRC prevention and therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Citocinas , Inflamação , Interleucina-23/genética , Interleucina-23/efeitos adversos , Subunidade p19 da Interleucina-23 , Camundongos Knockout , Obesidade/genética
10.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
11.
Curr Drug Targets ; 23(6): 628-635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34431463

RESUMO

BACKGROUND: Triglycerides (TG) are one of the major constituents of body fat and energy reservoir, which consist of an ester derived from glycerol and three free fatty acids. TG lipase, monoacylglycerol lipase, fatty acid synthase, and HMG-CoA reductase are some of the key enzymes related to TG metabolism, and their roles in colorectal cancer (CRC) initiation and progression are under investigation. METHODS: The literature search was performed based on various published papers, mostly on triglyceride metabolism relevant to CRC in PubMed, Google Scholar and other search engines. The gene expression profiling of some of the TG metabolic pathway mediators was performed by transcriptomic and/or proteomic data from The Cancer Genome Atlas (TCGA) database using R program and cBioportal software. RESULTS AND DISCUSSION: Accumulating pieces of evidence suggest that TG profiling may be used as a biomarker for the diagnosis and/or prognosis of CRC. Dysregulation of TG metabolism is associated with the initiation and progression of CRC. Most of the TG anabolic pathway mediators are overexpressed and/or overactivated during CRC tumorigenesis, while most TG catabolic pathway mediators are downregulated and/or inactivated based on literature search and correlated with TCGA data. Metabolic enzymes of TG and FAs metabolic pathways are involved in CRC tumor growth survival and metastasis. CONCLUSION: Overall studies from the previous literature and our TCGA data analysis demonstrated that the area of research on TG-associated lipid metabolic pathways holds great promise and warranted detailed investigations in this area for the implementation of novel preventive and therapeutic strategies against CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Humanos , Metabolismo dos Lipídeos , Prognóstico , Proteômica , Triglicerídeos/metabolismo
12.
Am J Cancer Res ; 12(5): 2118-2131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693092

RESUMO

Colorectal cancer (CRC) incidence is rising globally. Hence, preventing this disease is a high priority. With this aim, we determined the CRC prevention potential of the TRAIL-inducing small molecule ONC201/TIC10 using a preclinical model representing high-risk familial adenomatous polyposis (FAP) patients, Apc min/+ mice. Prior to the efficacy study, optimal and non-toxic doses of ONC201 were determined by testing five different doses of ONC201 (0-100 mg/kg body weight (BW); twice weekly by oral gavage) in C57BL/6J mice (n=6/group) for 6 weeks. BW gain, organ weights and histopathology, blood profiling, and the plasma liver enzyme profile suggested no toxicities of ONC201 at doses up to 100 mg/kg BW. For efficacy determination, beginning at six weeks of age, groups of Apc min/+ male and female mice (n≥20) treated with colon carcinogen azoxymethane (AOM) (AOM-Apc min/+) were administered ONC201 (0, 25, and 50 mg/kg BW) as above up to 20 weeks of age. At termination, efficacy was determined by comparing the incidence and multiplicity of intestinal tumors between vehicle- and drug-treated groups. ONC201 showed a strong suppressive effect against the development of both large and small intestinal tumors in male and female mice. Apc min/+ mice treated with ONC201 (50 mg/kg BW) showed >50% less colonic tumor incidence (P<0.0002) than controls. Colonic tumor multiplicity was also significantly reduced by 68% in male mice (0.44 ± 0.11 in treated vs. 1.4 ± 0.14 in controls; P<0.0001) and by 75% in female mice (0.30 ± 0.10 in treated vs. 1.19 ± 0.19 in controls; P<0.0003) with ONC201 treatment (50 mg/kg BW). Small intestinal polyps were reduced by 68% in male mice (11.40 ± 1.19 in treated vs. 36.08 ± 2.62 in controls; P<0.0001) and female mice (9.65 ± 1.15 in treated vs. 29.24 ± 2.51 in controls; P<0.0001). Molecular analysis of the tumors suggested an increase in TRAIL, DR5, cleaved caspases 3/7/8, Fas-associated death domain protein (FADD), and p21 (WAF1) in response to drug treatment. Serum analysis indicated a decrease in pro-inflammatory serum biomarkers, such as IL1ß, IL6, TNFα, G-CSF, and GM-CSF, in the ONC201-treated mice compared with controls. Our data demonstrated excellent chemopreventive potential of orally administered ONC201 against intestinal tumorigenesis in the AOM-Apc min/+ mouse model.

13.
Indian J Exp Biol ; 49(11): 826-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22126013

RESUMO

In recent years, the role of tumor-initiating cells (popularly known as cancer stem cells) in tumor development and availability of novel cancer stem cell/tumor initiating cell markers promises a new arena in understanding their role in developing novel targeted molecules. It is important to identify and understand the relevance of cancer stem cells (CSC)/tumor initiating cells (TIC) in tumor development and to design appropriate strategies for CSCs and TICs elimination, which is crucial to future cancer prevention and treatment. In this review, we attempt to define various potential markers of cancer stem cells and potential exploration as therapeutic targets for epithelial cancer prevention and treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Células Epiteliais/patologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Quinases Semelhantes a Duplacortina , Células Epiteliais/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680308

RESUMO

Obesity-associated chronic inflammation predisposes colon cancer risk development. Interleukin-23 (IL-23) is a potential inflammatory mediator linking obesity to chronic colonic inflammation, altered gut microbiome, and colon carcinogenesis. We aimed to elucidate the role of pro-inflammatory eicosanoids and gut bacterial toxins in priming dendritic cells and macrophages for IL-23 secretion to promote colon tumor progression. To investigate the association of IL-23 with obesity and colon tumorigenesis, we utilized TCGA data set and colonic tumors from humans and preclinical models. To understand IL-23 production by inflammatory mediators and gut microbial toxins, we performed several in vitro mechanistic studies to mimic the tumor microenvironment. Colonic tumors were utilized to perform the ex vivo experiments. Our findings showed that IL-23 is elevated in obese individuals, colonic tumors and correlated with reduced disease-free survival. In vitro studies showed that IL-23 treatment increased the colon tumor cell self-renewal, migration, and invasion while disrupting epithelial barrier permeability. Co-culture experiments of educated dendritic cells/macrophages with colon cancer cells significantly increased the tumor aggression by increasing the secretory levels of IL-23, and these observations are further supported by ex vivo rat colonic tumor organotypic experiments. Our results demonstrate gut microbe toxins and eicosanoids facilitate IL-23 production, which plays an important role in obesity-associated colonic tumor progression. This newly identified nexus represents a potential target for the prevention and treatment of obesity-associated colon cancer.

15.
Neoplasia ; 23(6): 574-583, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091121

RESUMO

Lung cancer is the leading cause of cancer related deaths worldwide. The present study investigated the effects of naproxen (NSAID) on lung adenocarcinoma in spontaneous lung cancer mouse model. Six-week-old transgenic KrasG12V mice (n = 20; male + female) were fed modified AIN-76A diets containing naproxen (0/400 ppm) for 30 wk and euthanized at 36 wk of age. Lungs were evaluated for tumor incidence, multiplicity, and histopathological stage (adenoma and adenocarcinoma). Lung tumors were noticeable as early as 12 wk of age exclusively in the KrasG12V mice. By 36 wk age, 100% of KrasG12V mice on control diet developed lung tumors, mostly adenocarcinomas. KrasG12V mice fed control diet developed 19.8 ± 0.96 (Mean ± SEM) lung tumors (2.5 ± 0.3 adenoma, 17.3 ± 0.7 adenocarcinoma). Administration of naproxen (400 ppm) inhibited lung tumor multiplicity by ∼52% (9.4 ± 0.85; P < 0001) and adenocarcinoma by ∼64% (6.1 ± 0.6; P < 0001), compared with control-diet-fed mice. However, no significant difference was observed in the number of adenomas in either diet, suggesting that naproxen was more effective in inhibiting tumor progression to adenocarcinoma. Biomarker analysis showed significantly reduced inflammation (COX-2, IL-10), reduced tumor cell proliferation (PCNA, cyclin D1), and increased apoptosis (p21, caspase-3) in the lung tumors exposed to naproxen. Decreased serum levels of PGE2 and CXCR4 were observed in naproxen diet fed KrasG12V mice. Gene expression analysis of tumors revealed a significant increase in cytokine modulated genes (H2-Aa, H2-Ab1, Clu), which known to further modulate the cytokine signaling pathways. Overall, the results suggest a chemopreventive role of naproxen in inhibiting spontaneous lung adenocarcinoma formation in KrasG12V mice.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Neoplasias Pulmonares/genética , Mutação , Naproxeno/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Substituição de Aminoácidos , Animais , Apoptose/genética , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Prev Res (Phila) ; 14(11): 1009-1020, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341012

RESUMO

Colorectal cancer causes over 53,000 deaths annually in the United States. Its rising incidences worldwide and particularly in young adults is a major concern. Here, we evaluated the efficacy of omeprazole that is clinically approved for treating acid reflux, to enable its repurposing for colorectal cancer prevention. In the azoxymethane-induced rat colorectal cancer model, dietary omeprazole (250 and 500 ppm) was administered at early adenoma stage (8 weeks after azoxymethane) to assess the progression of early lesions to adenocarcinoma. Administration of omeprazole at 250 or 500 ppm doses led to suppression of total colon adenocarcinoma incidence by 15.7% and 32% (P < 0.01), respectively. Importantly, invasive carcinoma incidence was reduced by 59% (P < 0.0005) and 90% (P < 0.0001) in omeprazole-administered rats in a dose-dependent manner. There was also a strong and dose-dependent inhibition in the adenocarcinoma multiplicity in rats exposed to omeprazole. Administration of 250 and 500 ppm omeprazole inhibited total colon adenocarcinoma multiplicity by approximately 49% and approximately 65% (P < 0.0001), respectively. While noninvasive adenocarcinomas multiplicity was suppressed by approximately 34% to approximately 48% (P < 0.02), the invasive carcinomas multiplicity was reduced by approximately 74% to approximately 94% (P < 0.0001) in omeprazole-exposed rats in comparison with the untreated rats. Biomarker analysis results showed a decrease in cell proliferation and anti-apoptotic/pro-survival proteins with an increase in apoptosis. Transcriptome analysis of treated tumors revealed a significant increase in adenocarcinoma inhibitory genes (Olmf4; Spink4) expression and downregulation of progression promoting genes (SerpinA1, MMP21, IL6). In summary, omeprazole showed significant protection against the progression of adenoma to adenocarcinoma. PREVENTION RELEVANCE: Preventing colon cancer is urgently needed because of its high incidence and mortality rates worldwide. Toward this end, preventive efficacy of omeprazole, a common medication, was evaluated in animal model of colorectal cancer and was found to suppress colonic adenoma progression to carcinoma. These findings warrant its further evaluation in humans.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Adenocarcinoma/prevenção & controle , Adenoma/induzido quimicamente , Adenoma/prevenção & controle , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Omeprazol/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Ratos , Ratos Endogâmicos F344
17.
Cancer Prev Res (Phila) ; 13(2): 185-194, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31699708

RESUMO

Recent observational studies suggest that bisphosphonates (BP) and antidiabetic drugs are associated with colorectal cancer risk reduction. Hence, we evaluated the colorectal cancer preventive effects of BPs (zometa and fosamax), individually and when combined with metformin, in azoxymethane-induced rat colon cancer model. Rat (30/group) were randomized and treated subcutaneously with azoxymethane to induce colorectal cancer. Dietary intervention with zometa or fosamax (0, 20, or 100 ppm) or metformin (1,000 ppm) or the combinations (zometa/fosamax 20 ppm plus metformin 1,000 ppm) began 4 weeks after azoxymethane treatment, at premalignant lesions stage. Rats were killed 40 weeks post drug intervention to assess colorectal cancer preventive efficacy. Dietary zometa (20 ppm) inhibited noninvasive adenocarcinomas multiplicity by 37% (P < 0.03) when compared with control diet fed group. Fosamax at 20 ppm and 100 ppm significantly reduced adenocarcinoma incidence (P < 0.005) and inhibited the noninvasive adenocarcinoma multiplicities by 43.8% (P < 0.009) and 60.8% (P < 0.004), respectively, compared with the group fed control diet. At 1,000 ppm dose, metformin failed to suppress colon adenocarcinoma formation. However, the lower dose combinations of zometa or fosamax with metformin resulted in significant inhibition of noninvasive adenocarcinoma by 48% (P < 0.006) and 64% (P < 0.0002), and invasive adenocarcinoma by 49% (P < 0.0005) and 38% (P < 0.006), respectively. Biomarker analysis of combination drug-treated tumors showed a decrease in cell proliferation with increased apoptosis when compared with untreated tumors. Overall, our results suggest that the combination of low doses of zometa or fosamax with metformin showed synergistic effect and significantly inhibited colon adenocarcinoma incidence and multiplicity.


Assuntos
Alendronato/farmacologia , Anticarcinógenos/farmacologia , Neoplasias do Colo/prevenção & controle , Metformina/farmacologia , Neoplasias Experimentais/prevenção & controle , Ácido Zoledrônico/farmacologia , Administração Oral , Alendronato/uso terapêutico , Animais , Anticarcinógenos/uso terapêutico , Apoptose/efeitos dos fármacos , Azoximetano/toxicidade , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/induzido quimicamente , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Metformina/uso terapêutico , Neoplasias Experimentais/química , Ratos , Ratos Endogâmicos F344 , Ácido Zoledrônico/uso terapêutico
18.
J Inflamm Res ; 13: 1261-1278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408499

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs, cyclooxygenase (COX)-2 selective inhibitors, have been explored for prevention and treatment of several inflammatory chronic conditions including arthritis, and cancer. However, the long-term use of these drugs is associated with gastrointestinal, renal, and cardiovascular side effects. Later, COX/5-lipoxygenase (5-LOX) dual inhibitors (eg, licofelone) have been developed but did not enter into the market from the clinical trails due to COX-1/2 inhibition-associated side effects. Hence, targeting microsomal prostaglandin E synthase-1 (mPGES-1) and 5-LOX can be an ideal approach while sparing COX-1/2 activities for development of the next generation of anti-inflammatory drugs with better efficacy and safety. MATERIALS AND METHODS: In silico (molecular modelling) studies were used to design a mPGES-1/5-LOX dual inhibitory and COX-1/2 sparing lead molecule licofelone analogue-9 (LFA-9) by modifying the pharmacophore of licofelone. In vitro cell-free enzymatic (mPGES-1, 5-LOX, COX-1/2) assays using fluorometric/colorimetric methods and cell-based assays (LPS-induced PGE2, LTB4, and PGI2 productions from macrophages) using ELISA technique, isothermal calorimetry, and circular dichroism techniques were performed to determine the mPGES-1/5-LOX inhibitory efficacy and selectivity. Anti-inflammatory efficacy of LFA-9 was evaluated using a carrageenan (inflammogen)-induced rat paw edema model. Infiltration/expression of CD68 immune cells and TNF-α in paw tissues were evaluated using confocal microscope and immunoblot analysis. Anti-cancer effect of LFA-9 was evaluated using colon spheroids in vitro. RESULTS: LFA-9 inhibited mPGES-1/5-LOX and their products PGE2 and LTB4, spared COX-1/2 and its product PGI2. LFA-9 bound strongly with human mPGES-1/5-LOX enzymes and induced changes in their secondary structure, thereby inhibited their enzymatic activities. LFA-9 inhibited carrageenan-induced inflammation (70.4%) in rats and suppressed CD68 immune cell infiltration (P ≤ 0.0001) and TNF-α expression. LFA-9 suppressed colon tumor stemness (60.2%) in vitro through inhibition of PGE2 (82%) levels. CONCLUSION: Overall study results suggest that LFA-9 is a mPGES-1/5-LOX dual inhibitor and showed anti-inflammatory and colorectal cancer preventive activities, and warranted detailed studies.

19.
Cancer Prev Res (Phila) ; 12(11): 751-762, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530543

RESUMO

Chronic use of aspirin and related drugs to reduce cancer risk is limited by unwanted side effects. Thus, we assessed the efficacy associated with different dosing regimens of aspirin and naproxen. Azoxymethane (AOM)-rat colon cancer model was used to establish the pharmacodynamic efficacy of aspirin and naproxen under different dosing regimens. Colon tumors were induced in rats (36/group) by two weekly doses of AOM. At the early adenoma stage, rats were fed diets containing aspirin (700 and 1,400 ppm) or naproxen (200 and 400 ppm), either continuously, 1 week on/1 week off, or 3 weeks on/3 weeks off, or aspirin (2,800 ppm) 3 weeks on/3 weeks off. All rats were euthanized 48 weeks after AOM treatment and assessed for efficacy and biomarkers in tumor tissues. Administration of aspirin and naproxen produced no overt toxicities. Administration of different treatment regimens of both agents had significant inhibitory effects with clear dose-response effects. Aspirin suppressed colon adenocarcinoma multiplicity (both invasive and noninvasive) by 41% (P < 0.003) to 72% (P < 0.0001) and invasive colon adenocarcinomas by 67%-91% (P < 0.0001), depending on the treatment regimen. Naproxen doses of 200 and 400 ppm inhibited invasive adenocarcinoma multiplicity by 53%-88% (P < 0.0001), depending on the dosing regimen. Colonic tumor biomarker analysis revealed that proliferation (proliferating cell nuclear antigen and p21), apoptosis (p53 and Caspase-3), and proinflammatory mediators (IL1ß and prostaglandin E2) were significantly correlated with the tumor inhibitory effects of aspirin and naproxen. Overall, our results suggest that intermittent dosing regimens with aspirin or naproxen demonstrated significant efficacy on the progression of adenomas to adenocarcinomas, without gastrointestinal toxicities.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenoma/tratamento farmacológico , Aspirina/farmacologia , Azoximetano/toxicidade , Neoplasias do Colo/tratamento farmacológico , Naproxeno/farmacologia , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/patologia , Adenoma/induzido quimicamente , Adenoma/patologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Masculino , Invasividade Neoplásica , Ratos , Ratos Wistar
20.
Curr Med Chem ; 25(22): 2535-2544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28183260

RESUMO

BACKGROUND: The incidence of pancreatic cancer (PC) is rising in parallel with the deaths caused by this malignant disease largely due to limited improvement in current treatment strategies. In spite of aggressive PC research, for the past three decades, there has been no significant improvement in the five-year survival for this cancer. Like many other cancers, it takes several years for normal pancreatic cells to transform into pancreatic precursor lesions and to further progress into invasive carcinoma. Hence there is a scope for the development of chemo-preventive strategies to inhibit/ delay/prevent progression of this disease into an advanced stage cancer. OBJECTIVE: Chemoprevention of pancreatic cancer. METHOD: Review of published literature. RESULTS AND CONCLUSION: Availability of various genetically engineered mouse (GEM) models of PC has led to accelerated progress in understanding the disease and developing intervention strategies otherwise stalled for a long time. These GEM models spontaneously develop PC in a stepwise manner and mimic the disease etiology in humans. Understanding PC development from initiation to progression to metastasis is very important for early detection and prevention of PC. In this review, we focus on the current situation, the potential challenges, the progress in existing strategies and available opportunities as well as suggest key areas for research within the increasingly important area of pancreatic cancer chemoprevention.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pancreáticas/prevenção & controle , Animais , Quimioprevenção , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/metabolismo , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa