RESUMO
Numerous attempts to overcome the poor water solubility of cam ptothecin (CPT) by various nano drug delivery systems are described in various sources in the literature. However, the results of these approaches may be hampered by the incomplete separation of free CPT from the formulations, and this issue has not been investigated in detail. This study aimed to promote the solubility and continuous delivery of CPT by developing long-lasting liposomes using various weights (M.W. 2000 and 5000 Daltons) of the hydrophilic polymer polyethylene glycol (PEG). Conventional and PEGylated liposomes containing CPT were formulated via the lipid film hydration method (solvent evaporation) using a rotary flash evaporator after optimising various formulation parameters. The following physicochemical characteristics were investigated: surface morphology, particle size, encapsulation efficiency, in vitro release, and formulation stability. Different molecular weights of PEG were used to improve the encapsulation efficiency and particle size. The stealth liposomes prepared with PEG5000 were discrete in shape and with a higher encapsulation efficiency (83 ± 0.4%) and a prolonged rate of drug release (32.2% in 9 h) compared with conventional liposomes (64.8 ± 0.8% and 52.4%, respectively) and stealth liposomes containing PEG2000 (79.00 ± 0.4% and 45.3%, respectively). Furthermore, the stealth liposomes prepared with PEG5000 were highly stable at refrigeration temperature. Significant changes were observed using various pharmacokinetic parameters (mean residence time (MRT), half-life, elimination rate, volume of distribution, clearance, and area under the curve) of stealth liposomes containing PEG2000 and PEG5000 compared with conventional liposomes. The stealth liposomes prepared with PEG5000 showed promising results with a slow rate of release over a long period compared with conventional liposomes and liposomes prepared with PEG2000, with altered tissue distribution and pharmacokinetic parameters.
Assuntos
Camptotecina/farmacologia , Camptotecina/farmacocinética , Carcinoma de Ehrlich/tratamento farmacológico , Lipossomos/química , Polietilenoglicóis/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Liberação Controlada de Fármacos , Técnicas In Vitro , Masculino , Polietilenoglicóis/química , Solubilidade , Distribuição TecidualRESUMO
The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC-MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box-Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.