Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(6): 064703, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792501

RESUMO

Binary metal oxide/ternary metal sulphide based nanoheterostructures, such as CuO/Cu2SnS3, were prepared via a modified hydrothermal route. The prepared nanoheterostructures were characterized using scanning electron microscopy, x-ray powder diffractometer, XPS, ultraviolet-visible spectroscopy, isoelectric point, and Brunauer-Emmett-Teller techniques. The XPS results revealed the successful incorporation of Cu+/Cu2+ with different ratios. The prepared heterostructures were tested as solar active photocatalysts for Methylene Blue (MB) photodegradation. The CuO/Cu2SnS3 (20% Cu2SnS3/80% CuO) photocatalytic results exhibited a high photodegradation efficiency (90%) after 60 min. In addition, the photonic efficiency values (ζ) were calculated to be 15.9%, 44%, and 61.4% for CuO, Cu2SnS3, and CuO/Cu2SnS3 nanoheterostructures, respectively. In addition, the reactive oxidative species were detected by the trapping experiments to get a clear insight about the photocatalytic reactivity factors. Total organic carbon (TOC) was conducted to confirm the safe photodegradation of MB dye without the formation of colorless hazardous (95.5% TOC removal). Based on the electronic band structure, the mechanism of photodegradation was investigated. The currently investigated heterostructure system is narrow/narrow bandgap, which fulfills the two contradictory conditions in terms of high solar photocatalytic activity and overcomes the rapid recombination process.

2.
Mikrochim Acta ; 186(8): 503, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270631

RESUMO

The use of carbon black-Fe3O4 magnetic nanocomposite (CB-Fe3O4) as a probe for surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS) with a high extraction efficiency and sensitive detection is described. The magnetic nanocomposite was synthesized and fully characterized using X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, transmission electron microscopy and nitrogen sorption. The feasibility of the SELDI probe to extract and detect three classes of drugs (labetalol, metoprolol, doxepin, desipramine, triprolidine and methapyrilene) spiked in wine is demonstrated. All the drugs were successfully and reproducibly extracted and detected with high efficiency and with limits of detection (LOD) between 1 and 1000 pg mL-1. The adsorption capacity of the nanocomposite for the drugs was evaluated by UV-Vis spectroscopy. The results showed that 27.8-36.1% of the drugs were adsorbed on the magnetic probe within 3 min. The nanocomposite was also applied for efficient analysis of amino acids and fatty acids. Both types of analytes can be extracted within a few minutes and then successfully quantified by SELDI-MS. Graphical abstract A schematic presentation of carbon black-Fe3O4 magnetic probe for SELDI analysis of small molecules. The probe containing the analyte(s) is collected with the aid of a magnet and deposited on the target plate for mass spectrometry analysis.


Assuntos
Aminoácidos/análise , Ácidos Graxos/análise , Nanopartículas de Magnetita/química , Nanocompostos/química , Preparações Farmacêuticas/análise , Fuligem/química , Adsorção , Aminoácidos/química , Ácidos Graxos/química , Fenômenos Magnéticos , Preparações Farmacêuticas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vinho/análise
3.
Anal Bioanal Chem ; 410(20): 4815-4827, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29770838

RESUMO

We explored the applicability of different metal oxide nanoparticles (NPs; ZnO, TiO2, Fe2O3, and CeO2) for the optical imaging and mass spectrometric determination of small drug molecules in latent fingerprints (LFPs). Optical imaging was achieved using a dry method-simply dusting the LFPs with a minute amount of NP powder-and still images were captured using a digital microscope and a smartphone camera. Mass spectrometric determination was performed using the NPs as substrates for surface-assisted laser desorption ionization/mass spectrometry (SALDI-MS), which enabled the detection of small drug molecules with high signal intensities. The reproducibility of the results was studied by calculating the % error, SD, and RSD in the results obtained with the various metal oxide NPs. Collectively, the findings showed that using NPs can boost the intensity of the detected signal while minimizing background noise which is an issue predominantly associated with conventional organic matrices of MALDI-MS. Among the four metal oxide NPs, utilization of the Fe2O3 NPs led to the best SALDI performance and the highest detection sensitivity for the analytes of interest. The study was then extended by investigating the influence of time elapsed since the generation of the LFP on the detection of drug molecules in the LFP. The results demonstrated that this method allows the analysis of drug molecules after as long as one week at low and intermediate temperatures (0 and 25 °C). Therefore, the SALDI analysis of small molecules using inorganic NPs, which can be implemented in forensic laboratories for screening and detection purposes, as a powerful alternative to the use of organic matrices. Graphical abstract ᅟ.


Assuntos
Antipsicóticos/análise , Nanopartículas/química , Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos Férricos/química , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes , Temperatura
4.
Phys Chem Chem Phys ; 16(16): 7146-58, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24554000

RESUMO

Although TiO2 is one of the most efficient photocatalysts, with the highest stability and the lowest cost, there are drawbacks that hinder its practical applications like its wide band gap and high recombination rate of the charge carriers. Consequently, many efforts were directed toward enhancing the photocatalytic activity of TiO2 and extending its response to the visible region. To head off these attempts, modification of TiO2 with noble metal nanoparticles (NMNPs) received considerable attention due to their role in accelerating the transfer of photoexcited electrons from TiO2 and also due to the surface plasmon resonance which induces the photocatalytic activity of TiO2 under visible light irradiation. This insightful perspective is devoted to the vital role of TiO2 photocatalysis and its drawbacks that urged researchers to find solutions such as modification with NMNPs. In a coherent context, we discussed here the characteristics which qualify NMNPs to possess a great enhancement effect for TiO2 photocatalysis. Also we tried to understand the reasons behind this effect by means of photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra, and Density Functional Theory (DFT) calculations. Then the mechanism of action of NMNPs upon deposition on TiO2 is presented. Finally we introduced a survey of the behaviour of these noble metal NPs on TiO2 based on the particle size and the loading amount.

5.
Environ Sci Pollut Res Int ; 31(13): 20556-20567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376776

RESUMO

In this contribution, the performance of powdered titanium dioxide (TiO2)-based photocatalysts was evaluated in a pilot photocatalytic plant for the degradation of different dyes, with an investigated volume of 1 L and solar simulated light as irradiation source. Five different samples, synthesized in our laboratories, were tested in the pilot plant, each consisting of TiO2 nanoparticles (NPs) coupled with a different material (persistent luminescent material and semiconductor material) and treated in different thermal conditions. All synthesized samples have been subjected to X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), and transmission electron microscopy (TEM) characterization, to shed light on the influence of introducing other materials on titania characteristics. To study and evaluate the significance of the parameters affecting the process in the pilot plant, a chemometric approach was applied, by selecting a mathematical model (D-Optimal) to simultaneously monitor a large number of variables (i.e., 7), both qualitative and quantitative, over a wide range of levels. At the same time, the recovery of the synthesized photocatalysts was studied following a novel promising recuperation method, i.e., annulling the surface charge of the suspended samples by reaching the isoelectric point (pHPZC) of each sample, for the quantitative precipitation of TiO2 nanoparticles.


Assuntos
Quimiometria , Nanopartículas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Corantes/química , Titânio/química , Catálise
6.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35564296

RESUMO

99Mo/99mTc generators play a significant role in supplying 99mTc for diagnostic interventions in nuclear medicine. However, the applicability of using low specific activity (LSA) 99Mo asks for sorbents with high sorption capacity. Herein, this study aims to evaluate the sorption behavior of LSA 99Mo towards several CeO2 nano-sorbents developed in our laboratory. These nanomaterials were prepared by wet chemical precipitation (CP) and hydrothermal (HT) approaches. Then, they were characterized using XRD, BET, FE-SEM, and zeta potential measurements. Additionally, we evaluated the sorption profile of carrier-added (CA) 99Mo onto each material under different experimental parameters. These parameters include pH, initial concentration of molybdate solution, contact time, and temperature. Furthermore, the maximum sorption capacities were evaluated. The results reveal that out of the synthesized CeO2 nanoparticles (NPs) materials, the sorption capacity of HT-1 and CP-2 reach 192 ± 10 and 184 ± 12 mg Mo·g-1, respectively. For both materials, the sorption kinetics and isotherm data agree with the Elovich and Freundlich models, respectively. Moreover, the diffusion study demonstrates that the sorption processes can be described by pore diffusion (for HT-synthesis route 1) and film diffusion (for CP-synthesis route 2). Furthermore, the thermodynamic parameters indicate that the Mo sorption onto both materials is a spontaneous and endothermic process. Consequently, it appears that HT-1 and CP-2 have favorable sorption profiles and high sorption capacities for CA-99Mo. Therefore, they are potential candidates for producing a 99Mo/99mTc radionuclide generator by using LSA 99Mo.

7.
Polymers (Basel) ; 13(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685340

RESUMO

Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The synthesized hybrid films were characterized using various analytical techniques, such as X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The hybrid films display excellent catalytic activities in Michael and Knoevenagel reactions via one pot or solvent-free approaches under microwave irradiation conditions. Chitosan/magnesia hybrid films, catalysed pyrimidine, benzochromene, coumarin and arylidene-malononitriles derivatives formation reactions occurred with highly efficient yields of 97%, 92%, 86% and 95% respectively. Due to the fact that the films are durable and insoluble in common organic solvents, they were easily separated and can be recycled up to five times without a considerable loss of their catalytic activity.

8.
RSC Adv ; 11(47): 29433-29440, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492066

RESUMO

Removal of heavy metal pollutants from water is a challenge to water security and the environment. Therefore, in this work, multinary chalcogenide based nanoheterostructures such as ZnS/SnIn4S8 nanoheterostructure with different loading amounts were prepared. The prepared nanoheterostructures were utilized as photocatalysts for chromium (Cr(vi)) photoreduction. The prepared nanoheterostructures were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS) and BET measurements. The absorption spectra of the prepared nanoheterostructures revealed that they are widely absorbed in the visible range with bandgap values 2.4-3.5 eV. The photocatalytic activities of prepared nanoheterostructures were studied toward the photoreduction of heavy metal, chromium (Cr(vi)), under irradiation of natural solar light. The ZnS/SnIn4S8 (with ZnS molar ratio 20%) nanoheterostructures results showed a high photocatalytic activity (92.3%) after 120 min which could be attributed to its enhanced charge carrier separation with respect to the bare ZnS and SnIn4S8 NPs. Also, the optoelectronic, valence-band XPS and electrochemical properties of the investigated photocatalysts were studied and the results revealed that the photocatalysts behave the step-scheme mechanism. The recyclability tests revealed a beneficial role of the surface charge in efficient regeneration of the photocatalysts for repeated use.

9.
Talanta ; 221: 121556, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076112

RESUMO

Pesticides can have harmful effects on the environment and on humans, resulting in acute, or in some cases, fatal poisoning. Pesticides are inexpensive, easily accessible, and commonly linked to forensic investigations involving suicide or attempted suicide. Pesticide exposure is monitored by determining the presence of the pesticide (or its metabolites) in biological samples, such as blood serum. Traditional methods require the use of a large sample volume and extensive sample preparation to confirm the presence of such harmful materials. Thus, owing to their unique physico-chemical properties, metal ferrites nanoparticles (NPs) were developed as assisting agents in surface-assisted laser desorption/ionization mass-spectrometry (SALDI-MS) for detecting pesticides in human blood serum. Specifically, ZnFe2O4, MnFe2O4, and CuFe2O4 NPs were synthesized using co-precipitation method and were characterized using different analytical techniques, including X-ray diffraction, UV-vis spectroscopy, X-ray photo-electron spectroscopy, transmission electron microscopy, and the Brunauer-Emmett-Teller method. First, it was shown that the integration of metal ferrites NPs in the SALDI technique enabled sensitive detection towards fatty acids used as model analytes with the limit-of-detection (LOD) in the range of 10 µg mL-1 to 1 fg mL-1. Additionally, the extent of internal energy transfer was evaluated for the ZnFe2O4, MnFe2O4, and CuFe2O4 NPs using the survival yield (SY) method with benzylpyridinium (BP) as the chemical thermometer. The obtained SY values were 0.95, 0.94, and 0.88 for ZnFe2O4, MnFe2O4, and CuFe2O4 NPs, respectively; this indicated the higher degree of internal energy transfer of CuFe2O4 NPs. Finally, CuFe2O4 NPs were utilized to probe human serum spiked with different pesticides using a small sample volume and minimal sample pretreatment. The findings confirmed the successful detection of napropamide, metalaxyl, and pestanal with satisfactory reproducibility and LODs of 10 µg mL-1, 10 ng mL-1, and 100 pg mL-1, respectively. Thus, the development of the high-efficiency SALDI technique will enable its use as an analytical tool in forensic investigation using minute volumes of sample and substrate and with minimum sample handling.


Assuntos
Nanopartículas Metálicas , Praguicidas , Compostos Férricos , Humanos , Reprodutibilidade dos Testes , Soro , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
RSC Adv ; 11(62): 39262-39269, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492487

RESUMO

In this paper, we studied the electrochemical capacitive performance of thermally evaporated copper iodide thin film doped with different quantities of Al (3, 5, 7, and 9 mol%). The morphological structure, crystalline nature, and surface composition of the deposited films with different dopant levels were confirmed using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FE-SEM). The electrochemical performance was evaluated based on cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS) in a Na2SO4 electrolyte. The XRD results confirm that the film is crystalline and has a face-centered cubic structure. The SEM images revealed trihedral-tipped structures with irregular nanocubes. The presence of the trihedral-tipped structures is more obvious in the Al-doped CuI films than in the bare film. We report a progressive increase in the specific capacitance values as the aluminum content increases, from 91.5 F g-1 for the pure CuI film to 108.3, 126.2, 142.8, and 131.1 F g-1 for the films with aluminum content of 3, 5, 7, and 9 mol%, respectively at a scan rate of 2 mV s-1. The optimized CuI-Al electrode with 7 mol% aluminum content showed remarkable long-term cycling stability with 89.1% capacitance retention after 2000 charge/discharge cycles. Such a high performance for the CuI-7Al film as a supercapacitor can be ascribed to the aluminum doping, which increases the electrochemically active area compared to the bare CuI film and is critical for electron exchange at the electrode/electrolyte interface. Therefore, we introduce CuI-Al as a viable option for supercapacitor applications because of its low-cost production, excellent electrochemical performance, and cycling stability.

11.
Adv Colloid Interface Sci ; 270: 38-53, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31174003

RESUMO

Colloidal synthesis of nanoparticles using polymeric stabilizers as a template of a structure directing agent provided a plethora of opportunities in fabricating nanoparticles (NPs) with controlled size, shape, composition and structural characteristics. To understand the complete potency of polymeric stabilizers during the synthesis of nanoparticles, the relationship between polymer characteristics such as structure, molecular weight and concentration and nanoparticles characteristics is discussed in depth. This review portrays the use of polymers to attain nanostructured materials via covalent and non-covalent approaches. These polymers can also serve as surfaces modifier as well as the growth regulators during the synthesis of nanomaterials. The effect provided by polymers that directs the formation of nanomaterials into desired forms is otherwise hard to achieve. We especially spotlight on the approaches for tuning the characteristic properties of nanoparticles via cautious choice of the polymer system with special focus to stimuli-responsive polymers. This review mainly focusses on answering the main challenging question; what is the ideal polymeric stabilizer system to obtain specific morphology, size and phase structure of nanoparticles? Such vital information will enable rational design of nanoparticles to meet specific needs for different applications.

12.
RSC Adv ; 9(72): 42010-42019, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542881

RESUMO

A series of metal complexes were prepared from separate reactions of lanthanide nitrate salts (La(iii), Ce(iii), Sm(iii), Gd(iii) and Ho(iii)) with 4-methylbenzoylhydrazide. The structures of the complexes were confirmed by analytical studies, spectral measurements and thermal studies. Complexes were formed with different stoichiometries of 1 : 2 and 1 : 3 (M : L). The ligand chelates by the nitrogen and oxygen atoms of the amino and carbonyl groups of the hydrazide moiety in the neutral keto form. The coordination compounds were converted to metal oxide nanoparticles (MONPs) through solid state thermal decomposition as monocular source precursors. The obtained MONPs were investigated via XRD, TEM and UV-Vis spectra. As a representative, CeO2 was utilized as a nanophotocatalyst to examine the photocatalytic activity of the MONPs for methylene blue (MB) photodegradation. CeO2 showed high removal of MB dye by 90.1% after UV illumination for 220 min. The reported method provides a generalized and systematic method for the preparation of many metal oxide nanoparticles with manageable and reproducible features.

13.
Talanta ; 185: 439-445, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759225

RESUMO

SALDI-MS analysis of pharmaceutical drug molecules (amitriptyline, imipramine and promazine) using carbon-based substrates, namely, activated charcoal (AC), carbon nanotubes (CNTs), carbon black (CB), graphene (rGO), graphene oxide (GO) and graphite, was explored and compared with the conventional organic matrix of MALDI. CB exhibited superior performance with respect to the other substrates in terms of detection sensitivity. Despite the effectiveness of CB to detect all drug molecules, it demonstrated a number of background signals, which may be an issue for the analysis of other molecules in the future. Therefore, for the first time, a CeO2-CB nanocomposite was synthesized and applied as a novel SALDI substrate to minimize the background signals and stabilize CB when exposed to high laser power. The nanocomposite was characterized using XRD, TEM, FTIR, UV-Vis and N2 sorpometry. The spectrum obtained using the novel nanocomposite in the absence of the drug molecules showed minimal background signals compared to CB. Additionally, the CeO2-CB nanocomposite enhanced the detection sensitivity of the drug molecules with a limit of detection (LOD) of 100 ng/mL. This active substrate nanocomposite was further applied for the analysis of drug-spiked beverages without sample pretreatment or extraction, mimicking cases encountered by forensic toxicologists. All of the drugs and/or their adducts were detected in the drug-spiked beverage samples.


Assuntos
Bebidas/análise , Cério/química , Nanocompostos/química , Preparações Farmacêuticas/análise , Fuligem/química , Tamanho da Partícula , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
14.
Sci Rep ; 8(1): 7104, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740107

RESUMO

Herein, a simple approach based on tailoring the surface charge of nanoparticles, NPs, during the preparation to boost the electrostatic attraction between NPs and the organic pollutant was investigated. In this study, chargeable titania nanoparticles (TiΟ2 NPs) were synthesized via a hydrothermal route under different pH conditions (pH = 1.6, 7.0 and 10). The prepared TiΟ2 NPs were fully characterized via various techniques including; transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption/desorption, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible spectroscopy (UV-Vis) and dynamic light scattering (DLS). The influence of the preparation pH on the particle size, surface area and band gap was investigated and showed pH-dependent behavior. The results revealed that upon increasing the pH value, the particle size decreases and lead to larger surface area with less particles agglomeration. Additionally, the effect of pH on the surface charge was monitored by XPS to determine the amount of hydroxyl groups on the TiO2 NPs surface. Furthermore, the photocatalytic activity of the prepared TiΟ2 NPs towards methylene blue (MB) photodegradation was manifested. The variation in the preparation pH affected the point of zero charge (pHPZC) of TiO2 NPs, subsequently, different photocatalytic activities based on electrostatic interactions were observed. The optimum efficiency obtained was 97% at a degradation rate of 0.018 min-1 using TiO2 NPs prepared at pH 10.

15.
Sci Rep ; 7(1): 14788, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093548

RESUMO

Herein, we report the synthesis of chromium oxide nanoparticles, α -Cr2O3 NPs, followed by full characterization via XRD, SEM, XPS, and N2 sorptiometry. The synthesized nanoparticles were tested as catalysts toward the oxidation of CO. The impact of calcination temperature on the catalytic activity was also investigated. CO conversion (%), light-off temperature, T50, data were determined. The results revealed that chromia obtained at low calcination temperature (400 °C) is more active than those obtained at high calcination temperatures (600° or 800 °C) and this is ascribed to the smaller particle size and higher surface area of this sample. The results revealed a superior catalytic activity of Cr2O3 NPs at lower temperature as we reached a complete conversion at 200 °C which is high value in the forefront of the published results of other non-noble catalysts. The high activity of Cr2O3 nanoparticles (T50 as low as 98 °C) where found to be dependent on a careful selection of the calcination temperature. These results may provide effective and economic solutions to overcome one of the major environmental threats.

16.
Nanoscale Res Lett ; 10: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852317

RESUMO

Zinc oxide (ZnO) nanostructures of uniform shapes and sizes (spherical, needle-like, and acicular) were directly synthesized using a relatively precursor-insensitive water-in-n-heptane microemulsion system stabilized by a mixture of cationic and non-ionic surfactants. With this colloidal system, the synthesized ZnO possesses the highest reported surface area (76 m(2) g(-1)) among the published reports utilizing other microemulsion systems. Such precursor insensitivity allowed studying the effect of Zn precursor:precipitating agent molar ratio (as high as 1:8) on the particle size, specific surface area, porosity, and morphology of the synthesized nanoparticles. The interaction of the cationic surfactant head groups and their Br(-) counter ions with Zn(2+) and OH(-) ions is believed to play a major role in controlling the ZnO characteristics. Due to such interactions, it is believed that the nucleation processes are retarded while the growth is more dominating if compared with other microemulsion systems.

17.
J Colloid Interface Sci ; 393: 210-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23200348

RESUMO

The structure of solubilized water in water-in-n-heptane aggregates stabilized by mixtures of single- and double-tail quaternary ammonium surfactants, namely didodecyldimethylammonium chloride/dodecyltrimethylammonium chloride (DDAC/DTAC) or didodecyldimethylammonium bromide/dodecyltrimethylammonium bromide (DDAB/DTAB) was studied by two noninvasive techniques, (1)H NMR and FT-IR. In the former, the chemical shift data, δ(obs), were used to calculate the so-called deuterium/protium fractionation factor, φ(M), of the aggregate-solubilized water and were found to be unity. In the FT-IR study, upon increasing water/surfactant molar ratio, W, the frequency, ν(OD), of the HOD species decreases, while its full width at half height and its area increase. The results obtained from both techniques indicate that the water appears to be present as a single nano-phase and the structure varies continuously as a result of increasing W. In addition, the effect of changing the counter-ion (Br(-) or Cl(-)) on (1)H NMR and FT-IR results was investigated. In spite of the known difference in the dissociation of these counter-ions from micellar aggregates, this was found not to affect the state of solubilized water. This report gives further insight into the contradictory scientific debates on the structure of water in the polar nano-cores of microemulsions.


Assuntos
Óleos/química , Tensoativos/química , Água/química , Cátions/química , Emulsões/química , Espectroscopia de Ressonância Magnética , Prótons , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa