Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 543(7647): 728-732, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28321130

RESUMO

A significant fraction of patients with advanced prostate cancer treated with androgen deprivation therapy experience relapse with relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC). Immune checkpoint blockade using antibodies against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1/programmed cell death 1 ligand 1 (PD1/PD-L1) generates durable therapeutic responses in a significant subset of patients across a variety of cancer types. However, mCRPC showed overwhelming de novo resistance to immune checkpoint blockade, motivating a search for targeted therapies that overcome this resistance. Myeloid-derived suppressor cells (MDSCs) are known to play important roles in tumour immune evasion. The abundance of circulating MDSCs correlates with prostate-specific antigen levels and metastasis in patients with prostate cancer. Mouse models of prostate cancer show that MDSCs (CD11b+Gr1+) promote tumour initiation and progression. These observations prompted us to hypothesize that robust immunotherapy responses in mCRPC may be elicited by the combined actions of immune checkpoint blockade agents together with targeted agents that neutralize MDSCs yet preserve T-cell function. Here we develop a novel chimaeric mouse model of mCRPC to efficiently test combination therapies in an autochthonous setting. Combination of anti-CTLA4 and anti-PD1 engendered only modest efficacy. Targeted therapy against mCRPC-infiltrating MDSCs, using multikinase inhibitors such as cabozantinib and BEZ235, also showed minimal anti-tumour activities. Strikingly, primary and metastatic CRPC showed robust synergistic responses when immune checkpoint blockade was combined with MDSC-targeted therapy. Mechanistically, combination therapy efficacy stemmed from the upregulation of interleukin-1 receptor antagonist and suppression of MDSC-promoting cytokines secreted by prostate cancer cells. These observations illuminate a clinical path hypothesis for combining immune checkpoint blockade with MDSC-targeted therapies in the treatment of mCRPC.


Assuntos
Imunoterapia/métodos , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Quimera , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Terapia de Alvo Molecular , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Próstata Resistentes à Castração/patologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Bioorg Med Chem Lett ; 25(11): 2280-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25933594

RESUMO

Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation.


Assuntos
Ácidos Borônicos/química , Niacinamida/análogos & derivados , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Ácidos Borônicos/uso terapêutico , Biologia Computacional , Desenho de Fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Estrutura Molecular , Niacinamida/química , Niacinamida/uso terapêutico , Ozônio/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-8B/química
4.
Bioorg Med Chem Lett ; 25(18): 3793-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26248802

RESUMO

The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.


Assuntos
Ácidos Borônicos/farmacologia , Niacinamida/análogos & derivados , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Administração Oral , Disponibilidade Biológica , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Niacinamida/administração & dosagem , Niacinamida/química , Niacinamida/farmacologia , Solubilidade , Relação Estrutura-Atividade , Água/química
5.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190294

RESUMO

Triple-negative breast carcinoma (TNBC) is one of the most aggressive types of solid-organ cancers. While immune checkpoint blockade (ICB) therapy has significantly improved outcomes in certain types of solid-organ cancers, patients with immunologically cold TNBC are afforded only a modest gain in survival by the addition of ICB to systemic chemotherapy. Thus, it is urgently needed to develop novel effective therapeutic approaches for TNBC. Utilizing the 4T1 murine model of TNBC, we developed a novel combination immunotherapeutic regimen consisting of intratumoral delivery of high-mobility group nucleosome binding protein 1 (HMGN1), TLR2/6 ligand fibroblast-stimulating lipopeptide (FSL-1), TLR7/8 agonist (R848/resiquimod), and CTLA-4 blockade. We also investigated the effect of adding SX682, a small-molecule inhibitor of CXCR1/2 known to reduce MDSC trafficking to tumor microenvironment, to our therapeutic approach. 4T1-bearing mice responded with significant tumor regression and tumor elimination to our therapeutic combination regimen. Mice with complete tumor regressions did not recur and became long-term survivors. Treatment with HMGN1, FSL-1, R848, and anti-CTLA4 antibody increased the number of infiltrating CD4+ and CD8+ effector/memory T cells in both tumors and draining lymph nodes and triggered the generation of 4T1-specific cytotoxic T lymphocytes (CTLs) in the draining lymph nodes. Thus, we developed a potentially curative immunotherapeutic regimen consisting of HMGN1, FSL-1, R848, plus a checkpoint inhibitor for TNBC, which does not rely on the administration of chemotherapy, radiation, or exogenous tumor-associated antigen(s).

6.
Nat Cancer ; 4(1): 62-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585453

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Receptores de Interleucina-8A/imunologia , Neoplasias Pancreáticas
7.
Sci Immunol ; 8(81): eade4656, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36897957

RESUMO

The noninflamed microenvironment in prostate cancer represents a barrier to immunotherapy. Genetic alterations underlying cancer cell-intrinsic oncogenic signaling are increasingly appreciated for their role in shaping the immune landscape. Recently, we identified Pygopus 2 (PYGO2) as the driver oncogene for the amplicon at 1q21.3 in prostate cancer. Here, using transgenic mouse models of metastatic prostate adenocarcinoma, we found that Pygo2 deletion decelerated tumor progression, diminished metastases, and extended survival. Pygo2 loss augmented the activation and infiltration of cytotoxic T lymphocytes (CTLs) and sensitized tumor cells to T cell killing. Mechanistically, Pygo2 orchestrated a p53/Sp1/Kit/Ido1 signaling network to foster a microenvironment hostile to CTLs. Genetic or pharmacological inhibition of Pygo2 enhanced the antitumor efficacy of immunotherapies using immune checkpoint blockade (ICB), adoptive cell transfer, or agents inhibiting myeloid-derived suppressor cells. In human prostate cancer samples, Pygo2 expression was inversely correlated with the infiltration of CD8+ T cells. Analysis of the ICB clinical data showed association between high PYGO2 level and worse outcome. Together, our results highlight a potential path to improve immunotherapy using Pygo2-targeted therapy for advanced prostate cancer.


Assuntos
Neoplasias da Próstata , Linfócitos T Citotóxicos , Masculino , Camundongos , Animais , Humanos , Cromatina/metabolismo , Linfócitos T CD8-Positivos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Imunoterapia , Camundongos Transgênicos , Microambiente Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética
8.
J Pharmacol Exp Ther ; 342(3): 696-708, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653877

RESUMO

N-[4-[[(2,4-diamino-6-pterdinyl)methyl]amino]benzoyl]-L/D-glutamic acid (L/D-AMT) is an investigational drug in phase 1 clinical development that consists of the L-and D-enantiomers of aminopterin (AMT). L/D-AMT is obtained from a novel process for making the L-enantiomer (L-AMT), a potent oral antiinflammatory agent. The purpose of these studies was to characterize oral uptake and safety in the dog and human of each enantiomer alone and in combination and provide in vitro evidence for a mechanism of intestinal absorption. This is the first report of L /D-AMT in humans. In dogs (n = 40) orally dosed with L-AMT or D-AMT absorption was stereoselective for the L-enantiomer (6- to 12-fold larger peak plasma concentration after oral administration and area under the plasma concentration-time curve at 0-4 h; p < 0.001). D-AMT was not toxic at the maximal dose tested (82.5 mg/kg), which was 100-fold larger than the maximal nonlethal L-AMT dose (0.8 mg/kg). Dogs (n = 10) and humans with psoriasis (n = 21) orally administered L-AMT and L /D-AMT at the same L-enantiomer dose resulted in stereoselective absorption (absent D-enantiomer in plasma), bioequivalent L-enantiomer pharmacokinetics, and equivalent safety. Thus, the D-enantiomer in L/D-AMT did not perturb L-enantiomer absorption or alter the safety of L-AMT. In vitro uptake by the human proton-coupled folate transporter (PCFT) demonstrated minimal transport of D-AMT compared with L-AMT, mirroring the in vivo findings. Enantiomer selectivity by PCFT was attributable almost entirely to decreased binding affinity rather than changes in transport rate. Collectively, our results demonstrate a strong in vitro-in vivo correlation implicating stereoselective transport by PCFT as the mechanism underlying stereoselective absorption observed in vivo.


Assuntos
Aminopterina/efeitos adversos , Aminopterina/farmacocinética , Absorção Intestinal/fisiologia , Transportador de Folato Acoplado a Próton/metabolismo , Psoríase/metabolismo , Administração Oral , Adulto , Aminopterina/administração & dosagem , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CHO , Células Cultivadas , Cricetinae , Estudos Cross-Over , Cães , Feminino , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Pessoa de Meia-Idade , Estereoisomerismo , Adulto Jovem
9.
Cancer Discov ; 12(1): 47-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34353854

RESUMO

SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with overactivation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion, and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor granulocytic myeloid-derived suppressor cells (gMDSC) via tumor-intrinsic, NFκB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C inhibitor trials. Combined SHP2 (SHP099)/CXCR1/2 (SX682) inhibition depleted a specific cluster of S100a8/9 hi gMDSCs, generated Klrg1 + CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in patients with NSCLC. SIGNIFICANCE: Our study shows that inhibiting the SHP2/RAS/ERK pathway triggers NFκB-dependent upregulation of CXCR2 ligands and recruitment of S100A8hi gMDSCs, which suppress T cells. Combining SHP2/CXCR2 inhibitors blocks gMDSC immigration, resulting in enhanced Th1 polarization, induced CD8+KLRG1+ effector T cells with high cytotoxic activity, and improved survival in multiple NSCLC models.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669155

RESUMO

Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-ßRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa