Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445942

RESUMO

Thyroid cancer is the most common endocrine malignant tumor with an increasing incidence rate. Although differentiated types of thyroid cancer generally present good clinical outcomes, some dedifferentiate into aggressive and lethal forms. However, the molecular mechanisms governing aggressiveness and dedifferentiation are still poorly understood. Aberrant expression of miRNAs is often correlated to tumor development, and miR-204-5p has previously been identified in papillary thyroid carcinoma as downregulated and associated with aggressiveness. This study aimed to explore its role in thyroid tumorigenesis. To address this, gain-of-function experiments were performed by transiently transfecting miR-204-5p in thyroid cancer cell lines. Then, the clinical relevance of our data was evaluated in vivo. We prove that this miRNA inhibits cell invasion by regulating several targets associated with an epithelial-mesenchymal transition, such as SNAI2, TGFBR2, SOX4 and HMGA2. HMGA2 expression is regulated by the MAPK pathway but not by the PI3K, IGF1R or TGFß pathways, and the inhibition of cell invasion by miR-204-5p involves direct binding and repression of HMGA2. Finally, we confirmed in vivo the relationship between miR-204-5p and HMGA2 in human PTC and a corresponding mouse model. Our data suggest that HMGA2 inhibition offers promising perspectives for thyroid cancer treatment.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Camundongos , Animais , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/patologia , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXC/genética
2.
Eur J Nucl Med Mol Imaging ; 43(7): 1267-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26810418

RESUMO

PURPOSE: Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. METHODS: We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. RESULTS: There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. CONCLUSION: Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure.


Assuntos
Carcinoma/etiologia , Carcinoma/genética , Perfilação da Expressão Gênica , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Liberação Nociva de Radioativos , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Glândula Tireoide/genética , Adolescente , Adulto , Carcinoma Papilar , Criança , Pré-Escolar , Éxons/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase , Câncer Papilífero da Tireoide , Adulto Jovem
3.
BMC Genomics ; 16: 828, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26487287

RESUMO

BACKGROUND: Papillary Thyroid Cancer (PTC) is the most prevalent type of endocrine cancer. Its incidence has rapidly increased in recent decades but little is known regarding its complete microRNA transcriptome (miRNome). In addition, there is a need for molecular biomarkers allowing improved PTC diagnosis. METHODS: We performed small RNA deep-sequencing of 3 PTC, their matching normal tissues and lymph node metastases (LNM). We designed a new bioinformatics framework to handle each aspect of the miRNome: whole expression profiles, isomiRs distribution, non-templated additions distributions, RNA-editing or mutation. Results were validated experimentally by qRT-PCR on normal samples, tumors and LNM from 14 independent patients and in silico using the dataset from The Cancer Genome Atlas (small RNA deepsequencing of 59 normal samples, 495 PTC, and 8 LNM). RESULTS: We performed small RNA deep-sequencing of 3 PTC, their matching normal tissues and lymph node metastases (LNM). We designed a new bioinformatics framework to handle each aspect of the miRNome: whole expression profiles, isomiRs distribution, non-templated additions distributions, RNA-editing or mutation. Results were validated experimentally by qRT-PCR on normal samples, tumors and LNM from 14 independent patients and in silico using the dataset from The Cancer Genome Atlas (small RNA deep-sequencing of 59 normal samples, 495 PTC, and 8 LNM). We confirmed already described up-regulations of microRNAs in PTC, such as miR-146b-5p or miR-222-3p, but we also identified down-regulated microRNAs, such as miR-7-5p or miR-30c-2-3p. We showed that these down-regulations are linked to the tumorigenesis process of thyrocytes. We selected the 14 most down-regulated microRNAs in PTC and we showed that they are potential biomarkers of PTC samples. Nevertheless, they can distinguish histological classical variants and follicular variants of PTC in the TCGA dataset. In addition, 12 of the 14 down-regulated microRNAs are significantly less expressed in aggressive PTC compared to non-aggressive PTC. We showed that the associated aggressive expression profile is mainly due to the presence of the BRAF V600E mutation. In general, primary tumors and LNM presented similar microRNA expression profiles but specific variations like the down-regulation of miR-7-2-3p and miR-30c-2-3p in LNM were observed. Investigations of the 5p-to-3p arm expression ratios, non-templated additions or isomiRs distributions revealed no major implication in PTC tumorigenesis process or LNM appearance. CONCLUSIONS: Our results showed that down-regulated microRNAs can be used as new potential common biomarkers of PTC and to distinguish main subtypes of PTC. MicroRNA expressions can be linked to the development of LNM of PTC. The bioinformatics framework that we have developed can be used as a starting point for the global analysis of any microRNA deep-sequencing data in an unbiased way.


Assuntos
Carcinoma/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/biossíntese , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Carcinoma/patologia , Carcinoma Papilar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Masculino , MicroRNAs/classificação , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Prognóstico , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Transcriptoma/genética
4.
Exp Cell Res ; 318(5): 444-52, 2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22240166

RESUMO

cAMP pathway activation by thyrotropin (TSH) induces differentiation and gene expression in thyrocytes. We investigated which partners of the cAMP cascade regulate gene expression modulations: protein kinase A and/or the exchange proteins directly activated by cAMP (Epac). Human primary cultured thyrocytes were analysed by microarrays after treatment with the adenylate cyclase activator forskolin, the protein kinase A (PKA) activator 6-MB-cAMP and the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP (007) alone or combined with 6-MB-cAMP. Profiles were compared to those of TSH. Cultures treated with the adenylate cyclase- or the PKA activator alone or the latter combined with 007 had profiles similar to those induced by TSH. mRNA profiles of 007-treated cultures were highly distinct from TSH-treated cells, suggesting that TSH-modulated gene expressions are mainly modulated by cAMP and PKA and not through Epac in cultured human thyroid cells. To investigate whether the Epac-Rap-RapGAP pathway could play a potential role in thyroid tumorigenesis, the mRNA expressions of its constituent proteins were investigated in two malignant thyroid tumor types. Modulations of this pathway suggest an increased Rap pathway activity in these cancers independent from cAMP activation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Glândula Tireoide/patologia , Tireotropina/fisiologia , Adenilil Ciclases/metabolismo , Bucladesina/análogos & derivados , Bucladesina/farmacologia , Carcinoma , Carcinoma Papilar , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Ativadores de Enzimas/farmacologia , Expressão Gênica , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Transdução de Sinais , Câncer Papilífero da Tireoide , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide/metabolismo , Tireotropina/farmacologia , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964967

RESUMO

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Assuntos
Imidazóis , Oximas , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinase 4 Dependente de Ciclina
6.
Mol Cell Endocrinol ; 541: 111491, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740746

RESUMO

The vast majority of thyroid cancers originate from follicular cells. We outline outstanding issues at each step along the path of cancer patient care, from prevention to post-treatment follow-up and highlight how emerging technologies will help address them in the coming years. Three directions will dominate the coming technological landscape. Genomics will reveal tumoral evolutionary history and shed light on how these cancers arise from the normal epithelium and the genomics alteration driving their progression. Transcriptomics will gain cellular and spatial resolution providing a full account of intra-tumor heterogeneity and opening a window on the microenvironment supporting thyroid tumor growth. Artificial intelligence will set morphological analysis on an objective quantitative ground laying the foundations of a systematic thyroid tumor classification system. It will also integrate into unified representations the molecular and morphological perspectives on thyroid cancer.


Assuntos
Invenções/tendências , Oncologia/tendências , Neoplasias da Glândula Tireoide , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Continuidade da Assistência ao Paciente/tendências , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Endocrinologia/tendências , Genômica/métodos , Genômica/tendências , Humanos , Oncologia/métodos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/terapia
7.
Cancers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053446

RESUMO

Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches. In this short review, we wish to summarize and discuss various aspects of this dynamic evolving heterogeneity and its biological, pathological, clinical, diagnostic, and therapeutic implications, using thyroid carcinoma as an illustrative example.

8.
Oncotarget ; 12(16): 1587-1599, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34381564

RESUMO

The aberrant expression of miRNAs is often correlated to tumor development. MiR-7-5p is a recently discovered downregulated miRNA in thyroid papillary carcinoma (PTC). The goal of this project was to characterize its functional role in thyroid tumorigenesis and to identify the targeted modulated pathways. MiR-7-5p overexpression following transfection in TPC1 and HT-ori3 cells decreased proliferation of the two thyroid cell lines. Analysis of global transcriptome modifications showed that miR-7-5p inhibits thyroid cell proliferation by modulating the MAPK and PI3K signaling pathways which are both necessary for normal thyroid proliferation and play central roles in PTC tumorigenesis. Several effectors of these pathways are indeed targets of miR-7-5p, among which EGFR and IRS2, two upstream activators. We confirmed the upregulation of IRS2 and EGFR in human PTC and showed the existence of a negative correlation between the decreased expression of miR-7-5p and the increased expression of IRS2 or EGFR. Our results thus support a tumor-suppressor activity of miR-7-5p. The decreased expression of miR-7-5p during PTC tumorigenesis might give the cells a proliferative advantage and delivery of miR-7-5p may represent an innovative approach for therapy.

9.
Front Cell Dev Biol ; 9: 669354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249923

RESUMO

The human thyroid gland acquires a differentiation program as early as weeks 3-4 of embryonic development. The onset of functional differentiation, which manifests by the appearance of colloid in thyroid follicles, takes place during gestation weeks 10-11. By 12-13 weeks functional differentiation is accomplished and the thyroid is capable of producing thyroid hormones although at a low level. During maturation, thyroid hormones yield increases and physiological mechanisms of thyroid hormone synthesis regulation are established. In the present work we traced the process of thyroid functional differentiation and maturation in the course of human development by performing transcriptomic analysis of human thyroids covering the period of gestation weeks 7-11 and comparing it to adult human thyroid. We obtained specific transcriptomic signatures of embryonic and adult human thyroids by comparing them to non-thyroid tissues from human embryos and adults. We defined a non-TSH (thyroid stimulating hormone) dependent transition from differentiation to maturation of thyroid. The study also sought to shed light on possible factors that could replace TSH, which is absent in this window of gestational age, to trigger transition to the emergence of thyroid function. We propose a list of possible genes that may also be involved in abnormalities in thyroid differentiation and/or maturation, hence leading to congenital hypothyroidism. To our knowledge, this study represent the first transcriptomic analysis of human embryonic thyroid and its comparison to adult thyroid.

10.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31701151

RESUMO

BACKGROUND: The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. METHODS: Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (ß radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. RESULTS: Overall, the thyrocyte responses following exposure to ß or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. ß and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to ß/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. CONCLUSIONS: TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


Assuntos
Dano ao DNA/fisiologia , Raios gama/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Radioisótopos do Iodo/efeitos adversos , Tireotropina/metabolismo , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Cultura Primária de Células , Células Epiteliais da Tireoide/metabolismo
11.
Thyroid ; 30(1): 133-146, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31650902

RESUMO

Background: The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na+/I- symporter (NIS), SLC26A7, and Na+/K+-ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional Vps34 inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. Methods:Vps34 was inactivated using a Pax8-driven Cre recombinase system. The impact of Vps34 inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by 125I injection and plasma analysis. Results:Vps34 conditional knockout (Vps34cKO) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at ∼1 month of age. We therefore analyzed thyroid Vps34cKO at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS+ colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 ± 0.62 µg/dL) and huge thyrotropin plasma levels (19,300 ± 10,500 mU/L); (iii) impaired 125I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. Conclusions: We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Proteólise , Simportadores/metabolismo , Células Epiteliais da Tireoide/metabolismo
12.
Cancer Res ; 67(17): 8113-20, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17804723

RESUMO

Cell lines are crucial to elucidate mechanisms of tumorigenesis and serve as tools for cancer treatment screenings. Therefore, careful validation of whether these models have conserved properties of in vivo tumors is highly important. Thyrocyte-derived tumors are very interesting for cancer biology studies because from one cell type, at least five histologically characterized different benign and malignant tumor types can arise. To investigate whether thyroid tumor-derived cell lines are representative in vitro models, characteristics of eight of those cell lines were investigated with microarrays, differentiation markers, and karyotyping. Our results indicate that these cell lines derived from differentiated and undifferentiated tumor types have evolved in vitro into similar phenotypes with gene expression profiles the closest to in vivo undifferentiated tumors. Accordingly, the absence of expression of most thyrocyte-specific genes, the nonresponsiveness to thyrotropin, as well as their large number of chromosomal abnormalities, suggest that these cell lines have acquired characteristics of fully dedifferentiated cells. They represent the outcome of an adaptation and evolution in vitro, which questions the reliability of these cell lines as models for differentiated tumors. However, they may represent useful models for undifferentiated cancers, and by their comparison with differentiated cells, can help to define the genes involved in the differentiation/dedifferentiation process. The use of any cell line as a model for a cancer therefore requires prior careful and thorough validation for the investigated property.


Assuntos
Adenoma/patologia , Carcinoma Papilar/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Adenoma/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Papilar/genética , Diferenciação Celular/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Cariotipagem , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Fenótipo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Tireotropina/farmacologia
13.
Thyroid ; 29(6): 845-857, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30990120

RESUMO

Background: Energy metabolism is described to be deregulated in cancer, and the Warburg effect is considered to be a major hallmark. Recently, cellular heterogeneity in tumors and the tumor microenvironment has been recognized to play an important role in several metabolic pathways in cancer. However, its contribution to papillary thyroid cancer (PTC) development and metabolism is still poorly understood. Methods: A proteomic analysis of five PTC was performed, and the cellular distribution of several upregulated metabolic proteins was investigated in the cancerous and stromal cells of these tumors. Results: Tandem mass spectrometry analysis revealed the upregulation of many metabolism-related proteins, among them pyruvate carboxylase (PC). PC knockdown in thyroid cell lines alters their proliferative and motility capacities, and measurements of oxygen consumption rates show that this enzyme is involved in the replenishment of the tricarboxylic acid cycle. Immunostainings of several upregulated metabolic proteins show that thyroid cancer cells have an increased mitochondrial oxidative metabolism compared to stromal cells. Conclusions: PTC has a very active tricarboxylic acid cycle, continuously replenished by a PC-mediated anaplerosis. This is specifically observed in the tumor cells.


Assuntos
Metabolismo Energético/fisiologia , Piruvato Carboxilase/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Consumo de Oxigênio/fisiologia , Proteômica , Células Estromais/metabolismo , Células Estromais/patologia , Espectrometria de Massas em Tandem , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
14.
Mol Cell Biol ; 25(7): 2846-52, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15767687

RESUMO

Rhophilin 2 is a Rho GTPase binding protein initially isolated by differential screening of a chronically thyrotropin (TSH)-stimulated dog thyroid cDNA library. In thyroid cell culture, expression of rhophilin 2 mRNA and protein is enhanced following TSH stimulation of the cyclic AMP (cAMP) transduction cascade. Yeast two-hybrid screening and coimmunoprecipitation have revealed that the GTP-bound form of RhoB and components of the cytoskeleton are protein partners of rhophilin 2. These results led us to suggest that rhophilin 2 could play an important role downstream of RhoB in the control of endocytosis during the thyroid secretory process which follows stimulation of the TSH/cAMP pathway. To validate this hypothesis, we generated rhophilin 2-deficient mice and analyzed their thyroid structure and function. Mice lacking rhophilin 2 develop normally, have normal life spans, and are fertile. They have no visible goiter and no obvious clinical signs of hyper- or hypothyroidism. The morphology of thyroid cells and follicles in these mice were normal, as were the different biological tests performed to investigate thyroid function. Our results indicate that rhophilin 2 does not play an essential role in thyroid physiology.


Assuntos
Proteínas Imediatamente Precoces/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Glândula Tireoide/citologia , Glândula Tireoide/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/citologia , Encéfalo/metabolismo , DNA Complementar/genética , Feminino , Perfilação da Expressão Gênica , Genótipo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Rim/citologia , Rim/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ovário/citologia , Ovário/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Testículo/citologia , Testículo/metabolismo , Glândula Tireoide/metabolismo
15.
J Clin Endocrinol Metab ; 103(3): 1102-1111, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342254

RESUMO

Context: Although 60% of papillary thyroid carcinomas are BRAFV600E mutant (PTCV600E), the increased aggressiveness of these cancers is still debated. Objective: For PTCV600E we aimed to further characterize the extent of the stroma and its activation, the three-dimensional (3D) tumor-stroma interface, and the proliferation rates of tumor and stromal fibroblasts. Design: We analyzed exomes, transcriptomes, and images of 364 papillary thyroid carcinoma (PTCs) from The Cancer Genome Atlas (TCGA), including 211 PTCV600E; stained 22 independent PTCs for BRAFV600E and Ki67; sequenced the exomes and stained BRAFV600E in 5 primary tumor blocks and 4 nodal metastases from one patient with PTCV600E; and reconstructed the 3D volumes of one tumor and one metastatic block at histological resolution. Results: In TCGA, BRAFV600E was associated with higher expression of proliferation markers and lower expression of thyroid differentiation markers, independently of tumor purity. Moreover, PTCV600E, in line with their overall lower purity, also had higher expression of fibroblast- and T cell-associated genes and presented more fibrosis. Tumor cells that appeared disconnected on two-dimensional histological slices were revealed to be part of a unique tumor component in the 3D reconstructed microvolumes, and they formed a surprisingly complex connected space, infiltrating a proliferative stroma. Finally, in our PTC set, both stromal fibroblasts and tumor cells presented higher proliferation rates in PTCV600E. Conclusions: Our results support the increased aggressiveness associated with BRAFV600E in PTC and shed light on the important role of the stroma in tumor expansion. The greater and more active fibrotic component predicts better efficiency of combined targeted treatments, as previously proposed for melanomaV600E.


Assuntos
Carcinoma Papilar/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Carcinoma Papilar/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Exoma , Feminino , Expressão Gênica , Genoma Humano/genética , Humanos , Antígeno Ki-67/genética , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/genética , Células Estromais/fisiologia , Câncer Papilífero da Tireoide , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Sequenciamento Completo do Genoma
16.
Oncotarget ; 9(12): 10343-10359, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535811

RESUMO

Non-autonomous thyroid nodules are common in the general population with a proportion found to be cancerous. A current challenge in the field is to be able to distinguish benign adenoma (FA) from preoperatively malignant thyroid follicular carcinoma (FTC), which are very similar both histologically and genetically. One controversial issue, which is currently not understood, is whether both tumor types represent different molecular entities or rather a biological continuum. To gain a better insight into FA and FTC tumorigenesis, we defined their molecular profiles by mRNA and miRNA microarray. Expression data were analyzed, validated by qRT-PCR and compared with previously published data sets. The majority of deregulated mRNAs were common between FA and FTC and were downregulated, however FTC showed additional deregulated mRNA. Both types of tumors share deregulated pathways, molecular functions and biological processes. The additional deregulations in FTC include the lipid transport process that may be involved in tumor progression. The strongest candidate genes which may be able to discriminate follicular adenomas and carcinomas, CRABP1, FABP4 and HMGA2, were validated in independent samples by qRT-PCR and immunohistochemistry. However, they were not able to adequately classify FA or FTC, supporting the notion of continuous evolving tumors, whereby FA and FTC appear to show quantitative rather than qualitative changes. Conversely, miRNA expression profiles showed few dysregulations in FTC, and even fewer in FA, suggesting that miRNA play a minor, if any, role in tumor progression.

17.
Endocrinology ; 148(10): 4612-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17584967

RESUMO

TSH, mainly acting through cAMP, is the principal physiological regulator of thyroid gland function, differentiation expression, and cell proliferation. Both cAMP-dependent protein kinases [protein kinase A (PKA)] and the guanine-nucleotide-exchange factors for Rap proteins, exchange proteins directly activated by cAMP (Epac) 1 and Epac2, are known to mediate a broad range of effects of cAMP in various cell systems. In the present study, we found a high expression of Epac1 in dog thyrocytes, which was further increased in response to TSH stimulation. Epac1 was localized in the perinuclear region. Epac2 showed little or no expression. The TSH-induced activation of Rap1 was presumably mediated by Epac1 because it was mimicked by the Epac-selective cAMP analog (8-p-chloro-phenyl-thio-2'-O-methyl-cAMP) and not by PKA-selective cAMP analogs. Surprisingly, in view of the high Epac1 expression and its TSH responsiveness, all the cAMP-dependent functions of TSH in cultures or tissue incubations of dog thyroid, including acute stimulation of thyroid hormone secretion, H(2)O(2) generation, actin cytoskeleton reorganization, p70(S6K1) activity, delayed stimulation of differentiation expression, and mitogenesis, were induced only by PKA-selective cAMP analogs. The Epac activator 8-p-chloro-phenyl-thio-2'-O-methyl-cAMP, used alone or combined with PKA-selective cAMP analogs, had no measurable effect on any of these TSH targets. Therefore, PKA activation seems to mediate all the recognized cAMP-dependent effects of TSH and is thus presumably responsible for the pathological consequences of its deregulation. The role of Epac1 and TSH-stimulated Rap1 activation in thyrocytes is still elusive.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Glândula Tireoide/fisiologia , Tireotropina/fisiologia , Actinas/ultraestrutura , Animais , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Citoesqueleto/ultraestrutura , DNA/biossíntese , Cães , Ativadores de Enzimas/farmacologia , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/biossíntese , Tireotropina/farmacologia
18.
Oncogene ; 24(46): 6902-16, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16027733

RESUMO

The purpose of this study was to use the microarray technology to define expression profiles characteristic of thyroid autonomous adenomas and relate these findings to physiological mechanisms. Experiments were performed on a series of separated adenomas and their normal counterparts on Micromax cDNA microarrays covering 2400 genes (analysis I), and on a pool of adenomatous tissues and their corresponding normal counterparts using microarrays of 18,000 spots (analysis II). Results for genes present on the two arrays corroborated and several gene regulations previously determined by Northern blotting or microarrays in similar lesions were confirmed. Five overexpressed and 24 underexpressed genes were also confirmed by real-time RT-PCR in some of the samples used for microarray analysis, and in additional tumor specimens. Our results show: (1) a change in the cell populations of the tumor, with a marked decrease in lymphocytes and blood cells and an increase in endothelial cells. The latter increase would correspond to the establishment of a close relation between thyrocytes and endothelial cells and is related to increased N-cadherin expression. It explains the increased blood flow in the tumor; (2) a homogeneity of tumor samples correlating with their common physiopathological mechanism: the constitutive activation of the thyrotropin (TSH)/cAMP cascade; (3) a low proportion of regulated genes consistent with the concept of a minimal deviation tumor; (4) a higher expression of genes coding for specific functional proteins, consistent with the functional hyperactivity of the tumors; (5) an increase of phosphodiesterase gene expression which explains the relatively low cyclic AMP levels measured in these tumors; (6) an overexpression of antiapoptotic genes and underexpression of proapoptotic genes compatible with their low apoptosis rate; (7) an overexpression of N-cadherin and downregulation of caveolins, which casts doubt about the use of these expressions as markers for malignancy.


Assuntos
Adenoma/genética , Adenoma/fisiopatologia , Perfilação da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/fisiopatologia , Adolescente , Adulto , Idoso , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Pathol Res Pract ; 212(7): 631-5, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27157405

RESUMO

The apolipoprotein L (apoL) family has not yet been ascribed any definite patho-physiological function although the conserved BH3 protein domain suggests a role in programmed cell death. As repression of the regular apoptotic program is considered a hallmark of tumor progression, we investigated apoL expression in cancer. We show that the levels of one member of the family, apolipoprotein L1 (apoL1) is higher in papillary thyroid carcinoma compared to normal tissue. A combination of qRTPCR, immunohistochemistry and in situ hybridization allowed us to ascribe this increase to endogenous overexpression in carcinoma cells. Whether apoL1 plays an instrumental role in refraining cell death is the subject of ongoing molecular biology experiments.


Assuntos
Apolipoproteínas/metabolismo , Carcinoma Papilar/metabolismo , Lipoproteínas HDL/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Apolipoproteína L1 , Apolipoproteínas/genética , Apoptose , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Humanos , Lipoproteínas HDL/genética , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
20.
Oncotarget ; 7(32): 52475-52492, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27248468

RESUMO

As in many cancer types, miRNA expression profiles and functions have become an important field of research on non-medullary thyroid carcinomas, the most common endocrine cancers. This could lead to the establishment of new diagnostic tests and new cancer therapies. However, different studies showed important variations in their research strategies and results. In addition, the action of miRNAs is poorly considered as a whole because of the use of underlying dogmatic truncated concepts. These lead to discrepancies and limits rarely considered. Recently, this field has been enlarged by new miRNA functional and expression studies. Moreover, studies using next generation sequencing give a new view of general miRNA differential expression profiles of papillary thyroid carcinoma. We analyzed in detail this literature from both physiological and differential expression points of view. Based on explicit examples, we reviewed the progresses but also the discrepancies and limits trying to provide a critical approach of where this literature may lead. We also provide recommendations for future studies. The conclusions of this systematic analysis could be extended to other cancer types.


Assuntos
MicroRNAs/análise , Neoplasias da Glândula Tireoide/genética , Perfilação da Expressão Gênica , Humanos , MicroRNAs/biossíntese , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa