Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 154(6): 064503, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588550

RESUMO

The properties of water vary dramatically with temperature and density. This can be exploited to control its effectiveness as a solvent. Thus, supercritical water is of keen interest as solvent in many extraction processes. The low solubility of salts in lower density supercritical water has even been suggested as a means of desalination. The high temperatures and pressures required to reach supercritical conditions can present experimental challenges during collection of required physical property and phase equilibria data, especially in salt-containing systems. Molecular simulations have the potential to be a valuable tool for examining the behavior of solvated ions at these high temperatures and pressures. However, the accuracy of classical force fields under these conditions is unclear. We have, therefore, undertaken a parametric study of NaCl in water, comparing several salt and water models at 200 bar-600 bar and 450 K-750 K for a range of salt concentrations. We report a comparison of structural properties including ion aggregation, hydrogen bonding, density, and static dielectric constants. All of the force fields qualitatively reproduce the trends in the liquid phase density. An increase in ion aggregation with decreasing density holds true for all of the force fields. The propensity to aggregate is primarily determined by the salt force field rather than the water force field. This coincides with a decrease in the water static dielectric constant and reduced charge screening. While a decrease in the static dielectric constant with increasing NaCl concentration is consistent across all model combinations, the salt force fields that exhibit more ionic aggregation yield a slightly smaller dielectric decrement.

2.
Phys Chem Chem Phys ; 22(28): 16051-16062, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32633286

RESUMO

Molecular dynamics (MD) simulations to understand the thermodynamic, dynamic, and structural changes in supercritical water across the Frenkel line and the melting line have been performed. The two-phase thermodynamic model [J. Phys. Chem. B, 2010, 114(24), 8191-8198] and the velocity autocorrelation functions are used to locate the Frenkel line and to calculate the thermodynamic and dynamic properties. The Frenkel lines obtained from the two-phase thermodynamic model and the velocity autocorrelation criterion do not agree with each other. Structural characteristics and the translational diffusion dynamics of water suggest that this inconsistency could arise from the two oscillatory modes in water, which are associated with the bending of hydrogen bonds and intermolecular collisions inside the first coordination shell. The overall results lead us to conclude that the universality of the Frenkel line as a dynamic crossover line from rigid to nonrigid fluids is preserved in water.

3.
J Chem Phys ; 151(22): 224504, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837692

RESUMO

We have performed classical molecular dynamics (MD) simulations of aqueous sodium chloride (NaCl) solutions from 298 to 674 K at 200 bars to understand the influence of ion pairing and ion self-diffusion on electrical conductivity in high-temperature/high-pressure salt solutions. Conductivity data obtained from the MD simulation highlight an apparent anomaly, namely, a conductivity maximum as temperature increases along an isobar, which has been also observed in experimental studies. By examining both velocity autocorrelation and cross-correlation terms of the Green-Kubo integral, we quantitatively demonstrate that the conductivity anomaly arises mainly from a competition between the single-ion self-diffusion and the contact ion pair formation. The velocity autocorrelation function in conjunction with structural analysis suggests that diffusive motion of ions is suppressed at high temperatures due to the persistence of an inner hydration shell. The contribution of velocity cross-correlation functions between oppositely charged ions becomes significant at the onset of the conductivity decrease. Structural analysis based on Voronoi tessellation and pair correlation functions indicates that the fraction of contact ion pairs increases as temperature increases. Spatial decomposition of the electrical conductivity also indicates that the formation of contact ion pairs significantly decreases the electrical conductivity compared to Nernst-Einstein conductivity, but the contribution of distant opposite charges cannot be ignored except at the highest temperature due to unscreened long-range interactions.

4.
Inorg Chem ; 55(10): 4941-50, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27110650

RESUMO

Two nitrogen-rich, isostructural complexes of uranium and thorium, (C5Me5)2U[η(2)-(N,N')-tetrazolate]2 (7) and (C5Me5)2Th[η(2)-(N,N')-tetrazolate]2 (8), containing 5-methyltetrazolate, have been synthesized and structurally characterized by single-crystal X-ray diffraction, electrochemical methods, UV-visible-near-IR spectroscopy, and variable-temperature (1)H NMR spectroscopy. Density functional theory (DFT) calculations yield favorable free energies of formation (approximately -375 kJ/mol) and optimized structures in good agreement with the experimental crystal structures. Additionally, calculated NMR chemical shifts of 7 and 8 are in good agreement with the variable-temperature (1)H NMR experiments. Time-dependent DFT calculations of both complexes yield UV-visible spectroscopic features that are consistent with experiment and provide assignments of the corresponding electronic transitions. The electronic transitions in the UV-visible spectroscopic region are attributed to C5Me5 ligand-to-metal charge transfer. The low-lying molecular orbitals of the tetrazolate ligands (∼2 eV below the HOMO) do not contribute appreciably to experimentally observed electronic transitions. The combined experimental and theoretical analysis of these new nitrogen-rich uranium and thorium complexes indicates the tetrazolate ligand behaves primarily as a σ-donor.

5.
J Chem Phys ; 139(5): 054505, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23927268

RESUMO

Two different techniques - replica-exchange Wang-Landau (REWL) and statistical temperature molecular dynamics (STMD) - were applied to systematically study the phase transition behavior of self-assembling lipids as a function of temperature using an off-lattice lipid model. Both methods allow the direct calculation of the density of states with improved efficiency compared to the original Wang-Landau method. A 3-segment model of amphiphilic lipids solvated in water has been studied with varied particle interaction energies (ε) and lipid concentrations. The phase behavior of the lipid molecules with respect to bilayer formation has been characterized through the calculation of the heat capacity as a function of temperature, in addition to various order parameters and general visual inspection. The simulations conducted by both methods can go to very low temperatures with the whole system exhibiting well-ordered structures. With optimized parameters, several bilayer phases are observed within the temperature range studied, including gel phase bilayers with frozen water, mixed water (i.e., frozen and liquid water), and liquid water, and a more fluid bilayer with liquid water. The results obtained from both methods, STMD and REWL, are consistently in excellent agreement with each other, thereby validating both the methods and the results.


Assuntos
Lipídeos/química , Simulação de Dinâmica Molecular , Tensoativos/química , Temperatura , Transição de Fase , Soluções
6.
Phys Chem Chem Phys ; 14(21): 7669-78, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22425812

RESUMO

Fragment methods have been widely studied for computing energies and forces, but less attention has been paid to nonenergetic properties. Here we extend the electrostatically embedded many-body (EE-MB) method to the calculation of cluster dipole moments, dipole moments of molecules in clusters, partial atomic charges, and charge transfer, and we test and validate the method by comparing to results calculated for the entire system without fragmentation. We also compare to calculations carried out by the conventional many-body (MB) method without electrostatic embedding. Systems considered are NH(3)(H(2)O)(11), (NH(3))(2)(H(2)O)(14), [Cl(H(2)O)(6)](-), (HF)(4), (HF)(5), (HF)(2)H(2)O, (HF)(3)H(2)O, and (HF)(3)(H(2)O)(2). With electrostatic embedding, we find that even at the pairwise additive level a quantitatively accurate description of a system's dipole moment and partial charge distribution and a qualitatively accurate description of the amount of intermolecular charge transfer can often be obtained.

7.
J Chem Phys ; 137(20): 204105, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23205979

RESUMO

Configurational-bias Monte Carlo has been incorporated into the Wang-Landau method. Although the Wang-Landau algorithm enables the calculation of the complete density of states, its applicability to continuous molecular systems has been limited to simple models. With the inclusion of more advanced sampling techniques, such as configurational-bias, the Wang-Landau method can be used to simulate complex chemical systems. The accuracy and efficiency of the method is assessed using as a test case systems of linear alkanes represented by a united-atom model. With strict convergence criteria, the density of states derived from the Wang-Landau algorithm yields the correct heat capacity when compared to conventional Boltzmann sampling simulations.

8.
J Phys Chem B ; 125(18): 4794-4807, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33938730

RESUMO

Experimental data suggest that the solubility of copper in high-temperature water vapor is controlled by the formation of hydrated clusters of the form CuCl(H2O)n, where the average number of water molecules in the cluster generally increases with increasing density [Migdisov, A. A.; et al. Geochim. Cosmochim. Acta 2014, 129, 33-53]. However, the precise nature of these clusters is difficult to probe experimentally. Moreover, there are some discrepancies between experimental estimates of average cluster size and prior simulation work [Mei, Y. Geofluids 2018, 2018, 4279124]. We have performed first-principles Monte Carlo (MC) and molecular dynamics (MD) simulations to explore these clusters in finer detail. We find that molecular dynamics is not the most appropriate technique for studying aggregation in vapor phases, even at relatively high temperatures. Specifically, our MD simulations exhibit substantial problems in adequately sampling the equilibrium cluster size distribution. In contrast, MC simulations with specialized cluster moves are able to accurately sample the phase space of hydrogen-bonding vapors. At all densities, we find a stable, slightly distorted linear H2O-Cu-Cl structure, which is in agreement with the earlier simulations, surrounded by a variable number of water molecules. The surrounding water molecules do not form a well-defined second solvation shell but rather a loose network of hydrogen-bonded water with molecular CuCl on the outside edge of the water cluster. We also find a broad distribution of hydration numbers, especially at higher densities. In contrast to previous simulation work but in agreement with experimental data, we find that the average hydration number substantially increases with increasing density. Moreover, the value of the hydration number depends on the choice of cluster definition.

9.
J Phys Chem B ; 113(18): 6415-25, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19358558

RESUMO

An extension of the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field to acrylate and methacrylate monomers is presented. New parameters were fit to the liquid density, normal boiling point, saturated vapor pressure, and (where experimentally available) critical constants of 1,3-butadiene, isoprene, methyl acrylate, and methyl methacrylate using Gibbs ensemble Monte Carlo simulations. Excellent agreement with experiment was obtained for the parametrization compounds and seven additional acrylate and methacrylate compounds, with average errors in liquid density and normal boiling point of approximately 1%. The TraPPE-UA force field also predicts accurate heats of vaporization at 298 K. In addition, Gibbs ensemble Monte Carlo simulations of binary vapor-liquid equilibria for the mixtures methyl acrylate/1-butanol and methyl acrylate/n-decane show that the TraPPE-UA acrylate force field performs well in mixtures with both polar and nonpolar molecules. These simulations also indicate structural microheterogeneity in the liquid phase of these mixtures.

10.
J Phys Chem A ; 113(10): 2075-85, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19260723

RESUMO

We present a comprehensive set of results for argon, a case study in weak interactions, using the self-consistent polarization density functional theory (SCP-DFT). With minimal parametrization, SCP-DFT is found to give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking.

11.
J Phys Chem B ; 117(37): 10852-68, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23964666

RESUMO

A fundamental understanding of the behavior of actinides in ionic liquids is required to develop advanced separation technologies. Spectroscopic measurements indicate a change in the coordination of uranyl in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) as water is added to the system. Molecular dynamics simulations of dilute uranyl (UO2(2+)) and plutonyl (PuO2(2+)) ) solutions in [EMIM][Tf2N]/water mixtures have been performed in order to examine the molecular-level coordination and dynamics of the actinyl cation (AnO2(2+)) ); An = U, Pu) as the amount of water in the system changes. The simulations show that the actinyl cation has a strong preference for a first solvation shell with five oxygen atoms, although a higher coordination number is possible in mixtures with little or no water. Water is a much stronger ligand for the actinyl cation than Tf2N, with even very small amounts of water displacing Tf2N from the first solvation shell. When enough water is present, the inner coordination sphere of each actinyl cation contains five water molecules without any Tf2N. Water also populates the second solvation shell, although it does not completely displace the Tf2N. At high water concentrations, a significant fraction of the water is found in the bulk ionic liquid, where it primarily coordinates with the Tf2N anion. Potential of mean force simulations show that the progressive addition of up to five water molecules to uranyl is very favorable, with ΔG ranging from −52.3 kJ/mol for the addition of the first water molecule to −37.6 kJ/mol for the addition of the fifth. Uranyl and plutonyl dimers formed via bridging Tf2N ligands are found in [EMIM][Tf2N] and in mixtures with very small amounts of water. Potential of mean force calculations confirm that the dimeric complexes are stable, with relative free energies of up to −9 kJ/mol in pure [EMIM][Tf2N]. We find that the self-diffusion coefficients for all the components in the mixture increase as the water content increases, with the largest increase for water and the smallest increase for the ionic liquid cation and anion. The velocity autocorrelation functions also indicate changes in structure and dynamics as the water content changes.

12.
J Phys Chem B ; 115(13): 3452-65, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21395331

RESUMO

Coarse-grain potentials allow one to extend molecular simulations to length and time scales beyond those accesssible to atomistic representations of the interacting system. Since the coarse-grain potentials remove a large number of interaction sites and, hence, a large number of degrees of freedom, it is generally assumed that coarse-grain potentials are not transferable to different systems or state points (temperature and pressure). Here we apply lessons learned from the parametrization of transferable atomistic potentials to develop a systematic procedure for the parametrization of transferable coarse-grain potentials. In particular, we apply an iterative Boltzmann optimization for the determination of the bonded interactions for coarse-grain beads belonging to the same molecule and separated by one or two coarse-grain bonds and parametrize the nonbonded interactions by fitting to the vapor-liquid coexistence curves computed for selected molecules represented by the TraPPE-UA (transferable potentials for phase equilibria-united atom) force field. This approach is tested here for linear alkanes where parameters for C(3)H(7) end segments and for C(3)H(6) middle segments of the TraPPE-CG (transferable potentials for phase equilibria-coarse grain) force field are determined and it is shown that these parameters yield quite accurate vapor-liquid equilibria for neat n-hexane to n-triacontane and for the binary mixture of n-hexane and n-hexatriacontane. In addition, the position of the first peak in various radial distribution functions and the coordination number for the first solvation shell are well reproduced by the TraPPE-CG force field, but the first peaks are too high and narrow.

13.
J Phys Chem B ; 114(12): 4261-70, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20201507

RESUMO

Gibbs ensemble Monte Carlo simulations are employed to examine the influence of moderately strong electric fields on the vapor-liquid coexistence curves and on structural and energetic properties of the saturated phases of water, methanol, and dimethyl ether. The application of an electric field of 0.1 V/A increases the critical temperature and normal boiling point by approximately 3% compared to the zero field case for all three compounds, whereas the critical density is found to decrease by 1% for methanol and dimethly ether and by 3% for water. For the special case of an electric field applied in only the liquid phase, these effects are magnified with a 4% increase in T(C) and a 13% decrease in rho(C). For the case of an electric field in only the vapor phase, the opposite effect is seen with a 4% decrease in T(C) and a 12% increase in rho(C). Structural analysis shows very little change in the radial distribution functions, but greatly increased orientational ordering with the application of an electric field. The orientational ordering effect is stronger in the liquid phase than in the vapor phase. An examination of the energetics reveals that, in the presence of an electric field, the interactions with the first and second solvation shells become less favorable but these are outweighed by a larger increase in the favorable long-range interactions with more distant molecules and the field.

14.
J Phys Chem B ; 113(42): 13752-60, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19639971

RESUMO

Previous experimental studies [Sliwinska-Bartkowiak et al., Chem. Phys. Lett. 1983, 94, 609] indicate that o-nitrotoluene/n-decane and m-nitrotoluene/n-decane mixtures are of particular interest because they exhibit anomalous behavior in the nonlinear dielectric effect near the upper critical solution point, and it has been surmised that these effects are due to an increase in cluster formation as each mixture approaches its critical point. In this work, Monte Carlo simulations are performed using the TraPPE force field at multiple temperatures, concentrations, and electric field strengths to examine the structural microheterogeneity of these mixtures and determine the dielectric constants and nonlinear dielectric effect. At low field strength, the simulations indicate substantial structural microheterogeneities, but these persist over a wide range of conditions. At high field strength (an order of magnitude higher than in the experimental work), the simulations indicate a field-induced segregation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa