Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1787, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720955

RESUMO

Gold mine tailings, fly ash, and bagasse ash has been repurposed to produce geopolymer (GP) with enhanced electromagnetic interference shielding efficiency (EMI-SE) and high thermal property. GP has low shielding efficiency compared to concrete. Due to this, an appropriate filler must be incorporated into its matrix to enhance its EMI-SE. For this study, bismuth oxide nanomaterial (BiNP) was utilized as the additive filler. The percent content of BiNP was varied to evaluate its influence on the EMI-SE of GP. Morphology shows that Bi2O3 was embedded in the matrix of GP, and no new aluminu-phyllosilicate minerals were formed. This indicates that some minerals acted only as internal fillers in the matrix. Compressive strength shows synthesized GP composites were more than 20 MPa, with neat GP reaching the maximum strength. Moreover, the EMI-SE of neat GP was 21.2 dB for 20-4500 MHz range. This indicates that GP alone has sufficient characteristics to attenuate EMI radiation. Addition of 5%, 10% and 15% weight of BiNP improves EMI-SE by 4-10%, with 5% BiNP shown to be the optimum ratio. Lastly, the addition of BiNP improves the thermal stability of GP. This study shows that GP incorporated with Bi2O3 can be recommended for small-scale construction and small residential building.

2.
Heliyon ; 7(4): e06654, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33869866

RESUMO

The continuous accumulation of artisanal and small-scale gold mining (ASGM) tailings in the Philippines without adequate storage and disposal facility could lead to human health and environmental disasters in the long run. In this study, ASGM tailings was simultaneously stabilized and repurposed as construction material via geopolymerization using coal fly ash, palm oil fuel ash and a powder-based alkali activator. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) identified iron sulfides in the tailings containing arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn), which could be released via weathering. The average unconfined compressive strengths (UCS) of tailings-based geopolymers at 14 days curing were 7.58 MPa and 7.7 MPa with fly ash and palm oil fuel ash, respectively. The tailings-based geopolymers with palm oil fuel ash had higher UCS most likely due to CASH reaction product formation that improved strength formation. The toxicity characteristic leaching procedure (TCLP) results showed very low leachabilities of As, Pb and Fe in the geopolymer materials suggesting ASGM tailings was effectively encapsulated within the geopolymer matrix. Overall, the geopolymerization of ASGM tailings is a viable and promising solution to simultaneously stabilize mining and industrial wastes and repurpose them into construction materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa