RESUMO
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Assuntos
Leucemia , MicroRNAs , Neoplasias , Humanos , RNA não Traduzido/genética , Transdução de Sinais/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Resistência a Medicamentos , MicroRNAs/metabolismoRESUMO
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/ß-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , RNA Circular/genética , Infecções por Papillomavirus/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genéticaRESUMO
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
RESUMO
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Transdução de Sinais/genética , Oncogenes , Regulação Neoplásica da Expressão GênicaRESUMO
Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.
Assuntos
Antineoplásicos , Neoplasias do Colo , Melatonina , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , ApoptoseRESUMO
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/ß-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genéticaRESUMO
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood-brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Adulto , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Carcinogênese , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , MicroRNAs/genéticaRESUMO
MicroRNAs (miRNAs) have recently become well-known efficacious biomarkers for the diagnosis of diabetic nephropathy (DN). MiRNAs, short noncoding RNAs, are posttranscriptional regulators of gene expression, which regulate several biological cell functions, including insulin production and secretion, as well as insulin resistance in tissues. Today, the focus of the medical world is centered on the role of miRNAs as mediators for different diseases, such as DN and end-stage renal diseases (ESRD). MiRNAs are stable and detectable in human biological fluids, so their detection for early diagnosis of different diseases is highly sensitive and specific. Previous reports have shown that the alteration of miRNA profiles significantly correlates with specific stages of DN, kidney fibrosis, and renal dysfunction. This review was aimed at assessing the pathway of different miRNA expressions responsible for insulin secretion disorder and DN progression.
Assuntos
Nefropatias Diabéticas/genética , Resistência à Insulina/genética , Secreção de Insulina/genética , MicroRNAs/genética , Biomarcadores/análise , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Progressão da Doença , Regulação da Expressão Gênica/genética , Humanos , Insulina/genética , Insulina/metabolismo , Transdução de Sinais/genéticaRESUMO
The current systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to summarize the effect of vitamin D supplementation on biomarkers of inflammation and oxidative stress among women with polycystic ovary syndrome (PCOS). Cochrane library, Embase, PubMed, and Web of Science database were searched to identify related randomized-controlled articles (RCTs) published up to November 2017. Two researchers assessed study eligibility, extracted data, and evaluated risk of bias of included RCTs, independently. To check heterogeneity Q-test and I2 statistics were used. Data were pooled by using the random-effect model and standardized mean difference (SMD) was considered as summary effect size. Seven RCTs were included into our meta-analysis. The findings showed that vitamin D supplementation in women with PCOS significantly decreased high-sensitivity C-reactive protein (hs-CRP) (SMD -1.03; 95% CI, -1.58, -0.49; p <0.001) and malondialdehyde (MDA) (SMD -1.64, 95% CI -2.26 to -1.02, p <0.001), and significantly increased total antioxidant capacity (TAC) levels (SMD 0.86, 95% CI 0.08 to 1.64, p=0.03). Vitamin D supplementation had no significant effect on nitric oxide (NO) (SMD 0.11, 95% CI -0.44 to 0.66, p=0.69) and total glutathione (GSH) levels (SMD 0.54, 95% CI -0.20 to 1.28, p=0.15). Overall, the current meta-analysis demonstrated that vitamin D supplementation to women with PCOS resulted in an improvement in hs-CRP, MDA and TAC, but did not affect NO and GSH levels.
Assuntos
Biomarcadores/sangue , Suplementos Nutricionais , Inflamação/sangue , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/sangue , Vitamina D/administração & dosagem , Feminino , Humanos , Inflamação/etiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitaminas/administração & dosagemRESUMO
Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.
Assuntos
Hepatopatias , Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Redes e Vias MetabólicasRESUMO
Polycystic ovary syndrome (PCOS) is a prevalent endocrine/metabolic disorder in women of reproductive age. PCOS is characterized by hyperandrogenism, polycystic ovary morphology, and ovulatory dysfunction/anovulation. It involves multiple effects in patients, including granulosa/theca cell hyperplasia, menstrual disturbances, infertility, acne, obesity, insulin resistance, and cardiovascular disorders. Biochemical analyses and the results of RNA sequencing studies in recent years have shown a type of non-coding RNAs as a splicing product known as circular RNAs (circRNAs). Several biological functions have been identified in relation to circRNAs, including a role in miRNA sponge, protein sequestration, increased parental gene expression, and translation leading to polypeptides. These circular molecules are more plentiful and specialized than other types of RNAs. For this reason, they are referred to as potential biomarkers in different diseases. Evidence suggests that circRNAs may have regulatory potentials through different signaling pathways, such as the miRNA network. Probably most experts in the field of obstetricians are not aware of circRNAs as a useful biomarker. Therefore, this review focused on the researches that have been done on the involvement of circRNAs in PCOS and summarized recent supportive evidence, and evaluated the circRNA association and mechanisms involved in PCOS.
Assuntos
Hiperandrogenismo , Resistência à Insulina , MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , RNA Circular/genética , MicroRNAs/genética , BiomarcadoresRESUMO
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
RESUMO
BACKGROUND: Metastatic Triple-negative Breast Cancer (mTNBC) is the most aggressive form of breast cancer, with a greater risk of metastasis and recurrence. Research studies have published in-depth analyses of the advantages and disadvantages of pembrolizumab, and early data from numerous trials suggests that patients with mTNBC have had remarkable outcomes. This meta-analysis compares the data from numerous relevant studies in order to evaluate the safety and efficacy of pembrolizumab monotherapy or combination therapies for mTNBC. METHODS: To identify eligible RCTs, a thorough literature search was carried out using electronic databases. CMA software was utilized to perform heterogeneity tests using fixed and random-effects models. RESULTS: According to our pooled data, the median Progression-free Survival (PFS) was 2.66 months, and the median overall survival (OS) was 12.26 months. Furthermore, by comparing efficacy indicators between PD-L1-positive and PD-L1-negative groups, a correlation was found between the overexpression of PD-L1 with OS, PFS, and ORR. Patients with PD-L1-positive tumors had a higher response rate, with an ORR of 21.1%, compared to the patients with PD-L1-negative tumors. The ORR for first-line immunotherapy was higher than that of ≥second-line immunotherapy. In addition, pembrolizumab plus combination treatment resulted in a pooled incidence of immune- related adverse events of 22.7%. CONCLUSION: A modest response to pembrolizumab monotherapy was detected in the mTNBC patients. Furthermore, a better outcome from pembrolizumab treatment may be predicted by PD-L1-- positive status, non-liver/lung metastases, combination therapy, and first-line immunotherapy. Pembrolizumab, in combination with chemotherapy, may be more beneficial for patients whose tumors are PD-L1 positive.
Assuntos
Anticorpos Monoclonais Humanizados , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias de Mama Triplo Negativas , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Antígeno B7-H1/genética , Metástase Neoplásica , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Terapia CombinadaRESUMO
The most prevalent and severe malignancy of the central nervous system within the brain is glioma. Glioma is a vascularized cancer, and angiogenesis is necessary for glioma growth, invasion, and recurrence. It is also believed that this factor is this factor to be accountable for therapy resistance in many cancers, including glioma. The process of angiogenesis, which plays a crucial role in both health and disease situations such as cancer, involves the creation of new blood vessels from pre-existing ones. Non-coding RNAs (ncRNAs) are unique molecules that have been found to possess a wide range of abilities to modify the expression of various genes. They carry out their gene-modulating roles at a variety of distinct levels, including post-transcriptional and post-translational levels. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs) are a group of ncRNA that have attracted particular attention and are involved in the angiogenesis mechanism in cancer. Understanding the regulatory mechanisms of these RNAs in the angiogenesis process in gliomas provides unique fundamental information about the process of tumor-associated neovascularization. On the other hand, due to developments in the characterisation of lncRNAs and circRNAs, these novel structures may potentially be used in clinics as possible biomarkers for treatment strategies that target tumor angiogenesis. Throughout the review, new knowledge and views about the angioregulatory function of circRNAs and lncRNAs in gliomas have been presented. Additionally, we talk about the novel idea of ncRNA-based therapeutics for gliomas in the future.
RESUMO
Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , RNA Circular , Transdução de Sinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão GênicaRESUMO
Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.
Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Cardiovasculares/diagnóstico , BiomarcadoresRESUMO
Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.
Assuntos
Cirrose Hepática , Resposta a Proteínas não Dobradas , Humanos , Cirrose Hepática/patologia , Estresse do Retículo Endoplasmático/fisiologia , Transdução de Sinais , Células-Tronco/metabolismoRESUMO
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
RESUMO
Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.