Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192107

RESUMO

Oropouche virus (OROV) is the aetiological agent of Oropouche fever, the symptoms of which are common to most arboviruses, such as fever, headache, malaise, nausea and vomiting. More than half a million people have been infected with OROV since its isolation in 1955. Although Oropouche fever is classified as a neglected and emerging disease, to date, there are no antiviral drugs or vaccines available against the infection and little is known about its pathogenicity. Therefore, it is essential to elucidate the possible mechanisms involved in its pathogenesis. Since oxidative stress plays a pivotal role in the progression of various viral diseases, in this study, redox homeostasis in the target organs of OROV infection was evaluated using an animal model. Infected BALB/c mice exhibited reduced weight gain, splenomegaly, leukopenia, thrombocytopenia, anaemia, development of anti-OROV neutralizing antibodies, increased liver transaminases, and serum levels of pro-inflammatory cytokines tumour necrosis factor (TNF-α) and interferon-γ (IFN-γ). The OROV genome and infectious particles were detected in the liver and spleen of infected animals, with liver inflammation and an increase in the number and total area of lymphoid nodules in the spleen. In relation to redox homeostasis in the liver and spleen, infection led to an increase in reactive oxygen species (ROS) levels, increased oxidative stress biomarkers malondialdehyde (MDA) and carbonyl protein, and decreased activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Taken together, these results help elucidate some important aspects of OROV infection that may contribute to the pathogenesis of Oropouche.


Assuntos
Infecções por Bunyaviridae , Baço , Animais , Camundongos , Espécies Reativas de Oxigênio , Baço/patologia , Fígado/patologia , Estresse Oxidativo
2.
Phytochem Anal ; 34(7): 869-883, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403427

RESUMO

INTRODUCTION: This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS: The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS: Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 µg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 µg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 µg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS: Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.


Assuntos
Lignanas , Phyllanthus , Infecção por Zika virus , Zika virus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Phyllanthus/química , Antivirais/farmacologia , Lignanas/farmacologia , Lignanas/química
3.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985517

RESUMO

The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian Cerrado, whose ethanolic extract showed significant in vitro anti-Zika virus activity by the MTT colorimetric method. Currently, there is no drug in clinical use specifically for the treatment of this virus; therefore, in this work, the antiviral and cytotoxic properties of the ethanolic extract, fractions, and compounds were evaluated. The ethanolic extract of the leaves showed no cytotoxicity for the human MRC-5 cell and was moderately cytotoxic for the Vero cell (CC50 161.5 ± 2.01 µg/mL). This extract inhibited the Zika virus multiplication cycle with an EC50 of 85.2 ± 1.65 µg/mL. This extract was fractionated using the liquid-liquid partition technique, and the ethyl acetate fraction showed significant activity against the Zika virus with an EC50 of 40.7 ± 2.33 µg/mL. From the ethyl acetate fraction, the flavonoids quercetin-3-O-hexosylgallate (1), quercetin-3-O-glucoside (2), and quercetin (5) were isolated, and in addition to these compounds, a mixture of quercetin-3-O-rhamnoside (3) and quercetin-3-O-arabinoside (4) was also obtained. The isolated compounds quercetin and quercetin-3-O-hexosylgallate inhibited the viral cytopathic effect at an EC50 of 18.6 ± 2.8 and 152.8 ± 2.0, respectively. Additionally, analyses by liquid chromatography coupled to a mass spectrometer allowed the identification of another 24 minor phenolic constituents present in the ethanolic extract and in the ethyl acetate fraction of this species.


Assuntos
Dilleniaceae , Infecção por Zika virus , Zika virus , Humanos , Flavonoides/química , Quercetina , Etanol/análise , Extratos Vegetais/química , Folhas de Planta/química , Infecção por Zika virus/tratamento farmacológico
4.
Mediators Inflamm ; 2014: 196598, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435714

RESUMO

BACKGROUND: Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. METHODS: The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. RESULTS: The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. CONCLUSIONS: The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose.


Assuntos
Baccharis , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fitoterapia , Acetaminofen/toxicidade , Alanina Transaminase/sangue , Analgésicos não Narcóticos/toxicidade , Animais , Antioxidantes/metabolismo , Antipiréticos/toxicidade , Aspartato Aminotransferases/sangue , Baccharis/química , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Células Hep G2 , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Endogâmicos F344
5.
Nat Prod Res ; : 1-10, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38328949

RESUMO

The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3ß-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3ß-O-D-glucosyl-sitosterol; CC50 > 1000 µg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.

6.
Free Radic Biol Med ; 213: 266-273, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278309

RESUMO

Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.


Assuntos
Antioxidantes , Febre Amarela , Humanos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vírus da Febre Amarela/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução , Catalase/genética , Catalase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Dissulfeto de Glutationa/metabolismo , Hepatócitos/metabolismo , Peroxidação de Lipídeos , Glutationa Peroxidase/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
7.
Phytomedicine ; 123: 155197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952409

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Assuntos
Dioxolanos , Glicosídeos , Lignanas , Naftalenos , Phyllanthus , Infecção por Zika virus , Zika virus , Recém-Nascido , Animais , Humanos , Chlorocebus aethiops , Infecção por Zika virus/tratamento farmacológico , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Replicação Viral
8.
Nat Prod Res ; 37(14): 2415-2420, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35142584

RESUMO

The ethanolic extract from leaves of Rauia resinosa, Rutaceae, provided a new flavone, 5-hydroxy-5',6,7-trimethoxy-3',4'-methylenedioxyflavone (1), in addition to four known compounds: 3',4',5,5',7-pentamethoxyflavone (2), 5,7,8-trimethoxy-3'4'-methylenedioxyflavone (3), 3',4',5,7,8-pentamethoxyflavone (4) and ß-sitosterol (5). The structures of all compounds were established on the basis of spectroscopic methods, mainly 1D and 2D NMR, UPLC-DAD-MS and UPLC-ESI-MS/MS, involving comparison with literature data. Cytotoxicity of leaves and stems extracts, their fractions and compounds (2), (3), (4) and (5) were evaluated against T24 (bladder carcinoma), TOV-21-G (ovarian adenocarcinoma) and HepG2 (liver carcinoma) cell lines.


Assuntos
Carcinoma , Flavonas , Rutaceae , Humanos , Espectrometria de Massas em Tandem , Flavonas/farmacologia , Flavonas/análise , Rutaceae/química , Extratos Vegetais/química , Folhas de Planta/química
9.
J Nutr Biochem ; 116: 109315, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921735

RESUMO

Immunometabolic changes in the liver and white adipose tissue caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet, sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanized on the 7th day. The HF diet decreased survival rate (58.3% vs. 76.2% C-Sp group), increased serum cytokine storm (IL-6 [1.41 ×; vs. HF-Sh], IL-1ß [1.37 ×; vs. C-Sp], TNF [1.34 ×; vs. C-Sp and 1.72 ×; vs. HF-Sh], IL-17 [1.44 ×; vs. HF-Sh], IL-10 [1.55 ×; vs. C-Sp and 1.41 ×; HF-Sh]), white adipose tissue inflammation (IL-6 [8.7 ×; vs. C-Sp and 2.4 ×; vs. HF-Sh], TNF [5 ×; vs. C-Sp and 1.7 ×; vs. HF-Sh], IL-17 [1.7 ×; vs. C-Sp], IL-10 [7.4 ×; vs. C-Sp and 1.3 ×; vs. HF-Sh]), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity [-81.7%; vs. HF-Sh]; increase MDA levels [82.8%; vs. HF-Sh], and hepatic IL-6 [1.9 ×; vs. HF-Sh], and TNF [1.3 × %; vs. HF-Sh]) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group livers. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.


Assuntos
Interleucina-10 , Sepse , Feminino , Camundongos , Animais , Interleucina-17 , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sepse/metabolismo , Camundongos Endogâmicos C57BL
10.
J Ethnopharmacol ; 311: 116436, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003399

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS: The leaves (LAE; EC50 12.0 µg/mL) and branches (TAE; EC50 101.0 µg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION: Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.


Assuntos
Alphavirus , Catequina , Maytenus , Animais , Chlorocebus aethiops , Antivirais/farmacologia , Antivirais/química , Catequina/farmacologia , Células Vero , Alphavirus/genética , Mamíferos
11.
Nat Prod Res ; 36(22): 5904-5909, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34994265

RESUMO

The expression of virulence factors, such as biofilm formation, in association with the acquisition of resistance to multiple drugs, has evidenced the need for new and effective antimicrobial agents against Staphylococcus aureus. The evaluation of the pharmacological properties of plant-derived compounds is a promising alternative to the development of new antimicrobials. In this study, we aimed to evaluate the antibacterial, antibiofilm, and the synergistic and cytotoxic effects of netzahualcoyonol isolated from Salacia multiflora (Lam.) DC. roots. Netzahualcoyonol presented bacteriostatic (1.56-25.0 µg/mL) and bactericidal (25.0-400.0 µg/mL) effects against Gram-positive bacteria, disrupted the biofilm of S. aureus, and presented a synergistic effect after its combination with ß-lactams and aminoglycosides. The low cytotoxicity of netzahualcoyonol (Selectivity Index (SI) for S. aureus (2.56), S. saprophyticus (20.56), and Bacillus subtilis (1.28)) suggests a good security profile. Taken together, these results show that netzahualcoyonol is promising for the development of a new effective antibacterial agent.


Assuntos
Celastraceae , Salacia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Bactérias Gram-Positivas , Antibacterianos/farmacologia
12.
Acta Trop ; 224: 106135, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34536367

RESUMO

Neglected for years, Zika virus (ZIKV) has become one of the most relevant arboviruses in current public health. The recent Zika fever epidemic in the Americas generated a worldwide alert due to the association with diseases such as Guillain-Barré syndrome and congenital syndromes. Among the pathogenesis of ZIKV, recent studies suggest that oxidative stress plays an important role during infection and that compounds capable of modulating oxidative stress are promising as therapeutics. Furthermore, so far there are no specific and efficient antiviral drug or vaccine available against ZIKV. Thus, fullerol was evaluated in the context of infection by ZIKV, since it is a carbon nanomaterial known for its potent antioxidant action. In this study, fullerol did not alter cell viability at the concentrations tested, proving to be inert, beyond to presenting high antioxidant power at low concentrations. ZIKV infection of human glioblastoma increased the production of reactive oxygen species by 60% and modulated the Nrf-2 pathway activity negatively. After treatment with fullerol, both conditions were restored to baseline levels. Additionally, fullerol was able to reduce viral production by up to 90%. Therefore, our results suggest that fullerol as a promising candidate in the control of ZIKV infections, presenting both antioxidant and antiviral action.


Assuntos
Síndrome de Guillain-Barré , Infecção por Zika virus , Zika virus , Antioxidantes/farmacologia , Antivirais/farmacologia , Humanos , Infecção por Zika virus/tratamento farmacológico
13.
Acta Trop ; 211: 105613, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32621935

RESUMO

Zika virus (ZIKV) epidemic and its association with severe neurological syndromes have raised worldwide concern. Despite the great clinical relevance of this infection, no vaccine or specific treatment is available and the search for antiviral compounds against ZIKV is extremely necessary. Several natural compounds, such as silymarin, exhibit antioxidant, hepatoprotective, and antiviral properties; however, the antiviral potential of this compound remains partially investigated. Therefore, the objective of this study was to evaluate in vitro the antiviral activity of silymarin against ZIKV infection. Global antiviral activity, dose-dependent, plaque reduction, and time-of-drug-addition assays were used to determine the anti-ZIKV activity of silymarin. Additionally, to start characterizing the mechanisms of action we determined whether silymarin could have a virucidal effect and inhibit viral adsorption and penetration stages. Regarding its global antiviral activity, silymarin showed significant inhibition of ZIKV infection, protecting cells infected with EC50 equal to 34.17µg/mL, with a selectivity index greater than 17 and 4x greater than that of the positive control (ribavirin). Its greatest efficiency was achieved at 125µg/mL, whose cell viability did not differ from the control without infection and treatment. Furthermore, treatment with silymarin reduced viral load by up to two logs (> 90%) concerning viral control, when evaluating virucidal activity and the precocious times of infection. Thus, our results set to show the promising anti-ZIKV activity of silymarin, which does not seem to have a single inhibition mechanism, acting at different times of infection, and still has the advantage of silymarin be a phytotherapy already available on the market.


Assuntos
Antivirais/farmacologia , Silimarina/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Humanos , Replicação Viral
14.
Free Radic Res ; 46(3): 329-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22239725

RESUMO

Annatto (Bixa orellana L.) contains a mixture of orange-yellowish pigments due to the presence of various carotenoids that have antioxidant effect. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen and nitrogen species (ROS and RNS) as part of the body's defence mechanisms to destroy invading pathogens. It is well known that the function of neutrophils is altered in diabetes; one of the major functional changes in neutrophils in diabetes is the increased generation of extracellular superoxide via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The purpose of this study is to evaluate the production of ROS and nitric oxide (NO) as well as the expression of NADPH oxidase subunits, inducible nitric oxide (iNOS), superoxide dismutase (SOD) and catalase (CAT) in neutrophils from diabetic rats treated with annatto extract and ß-carotene. Forty-eight female Fisher rats were distributed into six groups according to the treatment received. All animals were sacrificed 7 days after treatment, and the neutrophils were isolated using two gradients of different densities. The ROS and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Analyses of gene expression were performed using quantitative real time polymerase chain reaction (qRT-PCR). The results show that treatment with annatto extract and ß-carotene was able to decrease ROS production and the mRNA levels of p22(phox) and p47(phox) and increase the mRNA levels of SOD and CAT in neutrophils from diabetic rats. These data suggest that annatto extract and ß-carotene exerts antioxidant effect via inhibition of expression of the NADPH oxidase subunits and increase expression/activity of antioxidant enzymes.


Assuntos
Carotenoides/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Extratos Vegetais/farmacologia , beta Caroteno/farmacologia , Aloxano , Animais , Bixaceae , Catalase/biossíntese , Catalase/genética , Células Cultivadas/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Hepatócitos/efeitos dos fármacos , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , Neutrófilos/enzimologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
15.
J Clin Biochem Nutr ; 49(3): 188-94, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128218

RESUMO

Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver.

16.
Antiviral Res ; 80(3): 302-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18657576

RESUMO

Interferons (IFNs) are cytokines with important immunomodulatory activity in vertebrates. Although type I IFNs and interleukins (IL) 29 and 28a (type III IFNs) bind to different cellular receptors and have distinct structures, most of their biological activities are redundant. Apeu virus (APEUV) is a member of the Bunyaviridae family isolated from the Brazilian rain forest. In this paper we evaluated the antiviral activity of type I and type III IFNs against APEUV. All tested IFNs were able to induce an antiviral state against the virus in a dose-dependent way. The activity of type III IFNs did not need the presence of type I IFNs. Mixing both types of IFNs did not improve the biological activity of each type alone. The tested IFNs were also able to protect human peripheral blood mononuclear cells from infection. IFN alpha2, IFN beta, IL-29 and IL-28a induced the expression of 2',5'-oligoadenylate synthetase (2'5'OAS) and 6-16 genes. Although MxA gene was related to antiviral activity against Bunyaviruses, there was no induction of MxA in our model. We were able to show activity of type I and type III IFNs against a RNA virus, and that this activity is not dependent on MxA gene.


Assuntos
Antivirais/imunologia , Infecções por Bunyaviridae/tratamento farmacológico , Interferon Tipo I/imunologia , Interleucinas/imunologia , Animais , Antivirais/farmacologia , Infecções por Bunyaviridae/virologia , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Interferon Tipo I/farmacologia , Interferons , Interleucinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/imunologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa