Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877425

RESUMO

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Assuntos
Estudo de Associação Genômica Ampla , Fósforo , Raízes de Plantas , Locos de Características Quantitativas , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Solo/química , Fenótipo
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240253

RESUMO

Brazil has a crucial role in global food security and biodiversity, boasting one of the largest agricultural areas and two globally vital biomes, the Amazon and the Atlantic Forest [...].


Assuntos
Ecossistema , Florestas , Brasil , Biodiversidade , Plantas/genética
3.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047206

RESUMO

Maximizing soil exploration through modifications of the root system is a strategy for plants to overcome phosphorus (P) deficiency. Genome-wide association with 561 tropical maize inbred lines from Embrapa and DTMA panels was undertaken for root morphology and P acquisition traits under low- and high-P concentrations, with 353,540 SNPs. P supply modified root morphology traits, biomass and P content in the global maize panel, but root length and root surface area changed differentially in Embrapa and DTMA panels. This suggests that different root plasticity mechanisms exist for maize adaptation to low-P conditions. A total of 87 SNPs were associated to phenotypic traits in both P conditions at -log10(p-value) ≥ 5, whereas only seven SNPs reached the Bonferroni significance. Among these SNPs, S9_137746077, which is located upstream of the gene GRMZM2G378852 that encodes a MAPKKK protein kinase, was significantly associated with total seedling dry weight, with the same allele increasing root length and root surface area under P deficiency. The C allele of S8_88600375, mapped within GRMZM2G044531 that encodes an AGC kinase, significantly enhanced root length under low P, positively affecting root surface area and seedling weight. The broad genetic diversity evaluated in this panel suggests that candidate genes and favorable alleles could be exploited to improve P efficiency in maize breeding programs of Africa and Latin America.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/metabolismo , Fósforo/metabolismo , Melhoramento Vegetal , Fenótipo , Plântula/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Proc Natl Acad Sci U S A ; 116(1): 313-318, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545913

RESUMO

Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.


Assuntos
Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Proteínas de Transporte de Ânions/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Sorghum/genética , Sorghum/metabolismo , Sequências de Repetição em Tandem/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
BMC Plant Biol ; 21(1): 300, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187360

RESUMO

BACKGROUND: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. RESULTS: In this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. CONCLUSIONS: Our results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.


Assuntos
Alumínio/metabolismo , Proteínas de Transporte de Ânions/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transcriptoma
6.
Theor Appl Genet ; 134(1): 295-312, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33052425

RESUMO

KEY MESSAGE: A multiparental random mating population used in sorghum breeding is amenable for the detection of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches. Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] production are widespread in the developing world. We report on BRP13R, a multiparental random mating population (MP-RMP), which is commonly used in sorghum recurrent selection targeting tropical soil adaptation. Recombination dissipated much of BRP13R's likely original population structure and average linkage disequilibrium (LD) persisted up to 2.5 Mb, establishing BRP13R as a middle ground between biparental populations and sorghum association panels. Genome-wide association mapping (GWAS) identified conserved QTL from previous studies, such as for root morphology and grain yield under low-P, and indicated the importance of dominance in the genetic architecture of grain yield. By overlapping consensus QTL regions, we mapped two candidate P efficiency genes to a ~ 5 Mb region on chromosomes 6 (ALMT) and 9 (PHO2). Remarkably, we find that only 200 progeny genotyped with ~ 45,000 markers in BRP13R can lead to GWAS-based positional cloning of naturally rare, subpopulation-specific alleles, such as for SbMATE-conditioned Al tolerance. Genomic selection was found to be useful in such MP-RMP, particularly if markers in LD with major genes are fitted as fixed effects into GBLUP models accommodating dominance. Shifts in allele frequencies in progeny contrasting for grain yield indicated that intermediate to minor-effect genes on P efficiency, such as SbPSTOL1 genes, can be employed in pre-breeding via allele mining in the base population. Therefore, MP-RMPs such as BRP13R emerge as multipurpose resources for efficient gene discovery and deployment for breeding sorghum cultivars adapted to tropical soils.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Seleção Genética , Solo/química , Sorghum/genética , Adaptação Fisiológica/genética , Alelos , Alumínio , Brasil , Grão Comestível , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Fósforo , Melhoramento Vegetal , Clima Tropical
7.
BMC Plant Biol ; 19(1): 87, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819116

RESUMO

BACKGROUND: Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study the genetic architecture of P efficiency and to explore the importance of root traits on sorghum grain yield on a tropical low-P soil. RESULTS: P acquisition efficiency was the most important component of P efficiency, and both traits were highly correlated with grain yield under low P availability. Root surface area was positively associated with grain yield. The guinea parent, SC283, contributed 58% of all favorable alleles detected by single-trait mapping. Multi-trait mapping detected 14 grain yield and/or root morphology QTLs. Tightly linked or pleiotropic QTL underlying the surface area of fine roots (1-2 mm in diameter) and grain yield were detected at positions 1-7 megabase pairs (Mb) and 71 Mb on chromosome 3, respectively, and a root diameter/grain yield QTL was detected at 7 Mb on chromosome 7. All these QTLs were near sorghum homologs of the rice serine/threonine kinase, OsPSTOL1. The SbPSTOL1 genes on chromosome 3, Sb03g006765 at 7 Mb and Sb03g031690 at 60 Mb were more highly expressed in SC283, which donated the favorable alleles at all QTLs found nearby SbPSTOL1 genes. The Al tolerance gene, SbMATE, may also influence a grain yield QTL on chromosome 3. Another PSTOL1-like gene, Sb07g02840, appears to enhance grain yield via small increases in root diameter. Co-localization analyses suggested a role for other genes, such as a sorghum homolog of the Arabidopsis ubiquitin-conjugating E2 enzyme, phosphate 2 (PHO2), on grain yield advantage conferred by the elite parent, BR007 allele. CONCLUSIONS: Genetic determinants conferring higher root surface area and slight increases in fine root diameter may favor P uptake, thereby enhancing grain yield under low-P availability in the soil. Molecular markers for SbPSTOL1 genes and for QTL increasing grain yield by non-root morphology-based mechanisms hold promise in breeding strategies aimed at developing sorghum cultivars adapted to low-P soils.


Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas/genética , Sorghum/metabolismo , Grão Comestível/metabolismo , Raízes de Plantas/metabolismo , Solo , Sorghum/genética
8.
Heredity (Edinb) ; 121(1): 24-37, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29472694

RESUMO

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here, we evaluated the accuracy of genomic selection (GS) using additive (A) and additive + dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought tolerance traits were measured in 308 hybrids along eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids' genotypes were inferred based on their parents' genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Two cross-validation (CV) schemes were tested: CV1 and CV2. The FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive-by-environment and the dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Results showed differences in the predictive accuracy between A and AD models, using both CV1 and CV2, for the five traits in both water conditions. For grain yield (GY) under WS and using CV1, the AD model doubled the predictive accuracy in comparison to the A model. Through CV2, GS models benefit from borrowing information of correlated trials, resulting in an increase of 40% and 9% in the predictive accuracy of GY under WS for A and AD models, respectively. These results highlight the importance of multi-environment trial analyses using GS models that incorporate additive and dominance effects for genomic predictions of GY under drought in maize single-cross hybrids.


Assuntos
Adaptação Biológica , Secas , Genoma de Planta , Genômica , Modelos Genéticos , Característica Quantitativa Herdável , Estresse Fisiológico/genética , Algoritmos , Meio Ambiente , Interação Gene-Ambiente , Marcadores Genéticos , Genômica/métodos , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Seleção Genética
9.
Plant Dis ; 101(1): 200-208, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682293

RESUMO

Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is one of the most important maize foliar diseases in tropical and subtropical regions, causing significant yield losses. Despite its economic importance, genetic studies of MWS are scarce. The aim of this study was to map quantitative trait loci (QTL) associated with MWS resistance and to identify resistance gene analogs (RGA) underlying these QTL. QTL mapping was performed in a tropical maize F2:3 population, which was genotyped with simple-sequence repeat and RGA-tagged markers and phenotyped for the response to MWS in two Brazilian southeastern locations. Nine QTL explained approximately 70% of the phenotypic variance for MWS resistance at each location, with two of them consistently detected in both environments. Data mining using 112 resistance genes cloned from different plant species revealed 1,697 RGA distributed in clusters within the maize genome. The RGA Pto19, Pto20, Pto99, and Xa26.151.4 were genetically mapped within MWS resistance QTL on chromosomes 4 and 8 and were preferentially expressed in the resistant parental line at locations where their respective QTL occurred. The consistency of QTL mapping, in silico prediction, and gene expression analyses revealed RGA and genomic regions suitable for marker-assisted selection to improve MWS resistance.

10.
Proc Natl Acad Sci U S A ; 110(13): 5241-6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479633

RESUMO

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world's potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


Assuntos
Alumínio/farmacologia , Proteínas de Transporte/biossíntese , Resistência a Medicamentos/fisiologia , Evolução Molecular , Dosagem de Genes , Proteínas de Plantas/biossíntese , Locos de Características Quantitativas , Zea mays/metabolismo , Proteínas de Transporte/genética , Resistência a Medicamentos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Zea mays/genética
11.
Nat Genet ; 39(9): 1156-61, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721535

RESUMO

Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Sorghum/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorghum/crescimento & desenvolvimento
12.
BMC Plant Biol ; 15: 172, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148492

RESUMO

BACKGROUND: Modifications in root morphology are important strategies to maximize soil exploitation under phosphorus starvation in plants. Here, we used two multiple interval models to map QTLs related to root traits, biomass accumulation and P content in a maize RIL population cultivated in nutrient solution. In addition, we searched for putative maize homologs to PSTOL1, a gene responsible to enhance early root growth, P uptake and grain yield in rice and sorghum. RESULTS: Based on path analysis, root surface area was the root morphology component that most strongly contributed to total dry weight and to P content in maize seedling under low-P availability. Multiple interval mapping models for single (MIM) and multiple traits (MT-MIM) were combined and revealed 13 genomic regions significantly associated with the target traits in a complementary way. The phenotypic variances explained by all QTLs and their epistatic interactions using MT-MIM (23.4 to 35.5 %) were higher than in previous studies, and presented superior statistical power. Some of these QTLs were coincident with QTLs for root morphology traits and grain yield previously mapped, whereas others harbored ZmPSTOL candidate genes, which shared more than 55 % of amino acid sequence identity and a conserved serine/threonine kinase domain with OsPSTOL1. Additionally, four ZmPSTOL candidate genes co-localized with QTLs for root morphology, biomass accumulation and/or P content were preferentially expressed in roots of the parental lines that contributed the alleles enhancing the respective phenotypes. CONCLUSIONS: QTL mapping strategies adopted in this study revealed complementary results for single and multiple traits with high accuracy. Some QTLs, mainly the ones that were also associated with yield performance in other studies, can be good targets for marker-assisted selection to improve P-use efficiency in maize. Based on the co-localization with QTLs, the protein domain conservation and the coincidence of gene expression, we selected novel maize genes as putative homologs to PSTOL1 that will require further validation studies.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Zea mays/genética , Biomassa , Endogamia , Fósforo/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
13.
Plant Physiol ; 166(2): 659-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25189534

RESUMO

Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.


Assuntos
Oryza/enzimologia , Fósforo/análise , Proteínas de Plantas/fisiologia , Solo/química , Sorghum/metabolismo , Desequilíbrio de Ligação , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sorghum/crescimento & desenvolvimento
14.
Plant J ; 73(2): 276-88, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22989115

RESUMO

Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al-tolerance locus, AltSB , is due to the function of SbMATE, which is an Al-activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near-isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near-isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB . This reduction in tolerance was variable, with a 20% reduction being observed when highly Al-tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near-isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al-tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al-tolerance phenotype to the derived near-isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense-mediated RNA decay pathway.


Assuntos
Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Processamento Alternativo , Sequência de Bases , Variação Genética , Genoma de Planta , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Conformação Proteica , Sorghum/genética
15.
BMC Genomics ; 15: 153, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564817

RESUMO

BACKGROUND: Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars. RESULTS: Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al(3+) specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1. CONCLUSIONS: High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.


Assuntos
Adaptação Biológica/genética , Alumínio/toxicidade , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/efeitos dos fármacos , Zea mays/genética , Cruzamento , Mapeamento Cromossômico , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genótipo , Fenótipo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
16.
BMC Plant Biol ; 14: 206, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25112843

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and especially West Africa (WA). Improving productivity of this staple crop under these harsh conditions is crucial to improve food security and farmer's incomes in WA. RESULTS: This is the first study to examine the genetics underlying sorghum adaptation to phosphorus limitation in a wide range of WA growing conditions. A set of 187 diverse sorghum genotypes were grown in 29 -P and + P field experiments from 2006-2012 in three WA countries. Sorghum grain yield performance under -P and + P conditions was highly correlated (r = 0.85***). Significant genotype-by-phosphorus interaction was detected but with small magnitude compared to the genotype variance component. We observed high genetic diversity within our panel, with rapid linkage disequilibrium decay, confirming recent sequence based studies in sorghum. Using genome wide association mapping based on 220 934 SNPs we identified one genomic region on chromosome 3 that was highly associated to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, was collocated in this region and SbMATE specific SNPs showed very high associations to grain yield production, especially under -P conditions, explaining up to 16% of the genotypic variance. CONCLUSION: The results suggest that SbMATE has a possible pleiotropic role in providing tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate breeding for increased sorghum productivity under unfavorable soil conditions and contribute to assuring food security in WA.


Assuntos
Alumínio/metabolismo , Fósforo/metabolismo , Sementes/crescimento & desenvolvimento , Sorghum/genética , África Ocidental , Biomassa , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Solo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo
17.
J Exp Bot ; 65(9): 2381-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692647

RESUMO

Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species.


Assuntos
Alumínio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Expressão Gênica , Hordeum/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Sorghum/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Hordeum/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação para Cima
18.
Plant J ; 71(2): 327-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22413742

RESUMO

The primary mechanism of Arabidopsis aluminum (Al) resistance is based on root Al exclusion, resulting from Al-activated root exudation of the Al(3+) -chelating organic acids, malate and citrate. Root malate exudation is the major contributor to Arabidopsis Al resistance, and is conferred by expression of AtALMT1, which encodes the root malate transporter. Root citrate exudation plays a smaller but still significant role in Arabidopsis Al resistance, and is conferred by expression of AtMATE, which encodes the root citrate transporter. In this study, we demonstrate that levels of Al-activated root organic acid exudation are closely correlated with expression of the organic acid transporter genes AtALMT1 and AtMATE. We also found that the AtALMT1 promoter confers a significantly higher level of gene expression than the AtMATE promoter. Analysis of AtALMT1 and AtMATE tissue- and cell-specific expression based on stable expression of promoter-reporter gene constructs showed that the two genes are expressed in complementary root regions: AtALMT1 is expressed in the root apices, while AtMATE is expressed in the mature portions of the roots. As citrate is a much more effective chelator of Al(3+) than malate, we used a promoter-swap strategy to test whether root tip-localized expression of the AtMATE coding region driven by the stronger AtALMT1 promoter (AtALMT1(P)::AtMATE) resulted in increased Arabidopsis Al resistance. Our results indicate that expression of AtALMT1(P)::AtMATE not only significantly increased Al resistance of the transgenic plants, but also enhanced carbon-use efficiency for Al resistance.


Assuntos
Adaptação Fisiológica/fisiologia , Alumínio/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Transportadores de Ânions Orgânicos/genética , Regiões Promotoras Genéticas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ácido Cítrico/metabolismo , Malatos/metabolismo , Mutagênese Insercional , Especificidade de Órgãos , Transportadores de Ânions Orgânicos/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
19.
Plant Phenomics ; 5: 0097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780968

RESUMO

Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.

20.
aBIOTECH ; 4(4): 315-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106432

RESUMO

Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00112-w.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa