Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054834

RESUMO

Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , RNA Circular/sangue , Neoplasias Gástricas/diagnóstico , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Detecção Precoce de Câncer , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , RNA-Seq , Neoplasias Gástricas/sangue , Neoplasias Gástricas/genética
2.
BMC Cancer ; 21(1): 363, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827469

RESUMO

BACKGROUND: Next generation sequencing (NGS) has been a handy tool in clinical practice, mainly due to its efficiency and cost-effectiveness. It has been widely used in genetic diagnosis of several inherited diseases, and, in clinical oncology, it may enhance the discovery of new susceptibility genes and enable individualized care of cancer patients. In this context, we explored a pan-cancer panel in the investigation of germline variants in Brazilian patients presenting clinical criteria for hereditary cancer syndromes or familial history. METHODS: Seventy-one individuals diagnosed or with familial history of hereditary cancer syndromes were submitted to custom pan-cancer panel including 16 high and moderate penetrance genes previously associated with hereditary cancer syndromes (APC, BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1, RET, TP53, VHL, XPA and XPC). All pathogenic variants were validated by Sanger sequencing. RESULTS: We identified a total of eight pathogenic variants among 12 of 71 individuals (16.9%). Among the mutation-positive subjects, 50% were diagnosed with breast cancer and had mutations in BRCA1, CDH1 and MUTYH. Notably, 33.3% were individuals diagnosed with polyposis or who had family cases and harbored pathogenic mutations in APC and MUTYH. The remaining individuals (16.7%) were gastric cancer patients with pathogenic variants in CDH1 and MSH2. Overall, 54 (76.05%) individuals presented at least one variant uncertain significance (VUS), totalizing 81 VUS. Of these, seven were predicted to have disease-causing potential. CONCLUSION: Overall, analysis of all these genes in NGS-panel allowed the identification not only of pathogenic variants related to hereditary cancer syndromes but also of some VUS that need further clinical and molecular investigations. The results obtained in this study had a significant impact on patients and their relatives since it allowed genetic counselling and personalized management decisions.


Assuntos
Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Síndromes Neoplásicas Hereditárias/genética , Brasil , Feminino , Humanos , Masculino
3.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155913

RESUMO

Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.


Assuntos
Núcleo Celular/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Mitocôndrias/genética , RNA não Traduzido/genética , Animais , Humanos
4.
BMC Cancer ; 18(1): 721, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976158

RESUMO

BACKGROUND: The theory of field effect suggests that the tumor-adjacent area, besides histopathologically normal, undergoes genetic and epigenetic changes that can eventually affect epithelial homeostasis, predisposing the patient to cancer development. One of the many molecular changes described in cancer are microRNAs (miRNAs), which regulates the expression of important genes during carcinogenesis. Thus, the aim of this study was to investigate the field effect in oral cancer. METHODS: We investigated the differential expression profile of four miRNAs (hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c) in cancerous oral tissue, in tumor-adjacent tissue and and in non-cancerous tissue samples from healthy volunteers. RESULTS: Our results showed significant overexpression profiles of all four studied miRNAs in cancerous oral tissue compared to non-cancerous samples, as well as in tumor-adjacent tissue compared to cancer-free tissue. No significant difference was found when comparing the expression profile of cancerous and tissue-adjacent tissue groups. We found a negative correlation between the expression of hsa-miR-21 expression and STAT3 in oral squamous cell carcinoma. CONCLUSION: These results suggest that the tissue adjacent to cancer cannot be considered a normal tissue because its molecular aspects are significantly altered. Our data corroborates the hypothesis of field cancerization.


Assuntos
MicroRNAs/análise , Neoplasias Bucais/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/química , Fator de Transcrição STAT3/análise , Transcriptoma
5.
BMC Cancer ; 18(1): 1055, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376837

RESUMO

BACKGROUND: Several genetic and epigenetic alterations are related to the development and progression of Gastric Cancer (GC), one of those being the deregulated microRNA (miRNA) expression profile. miRNAs are small noncoding RNAs that negatively regulate the expression of thousands of genes, including oncogenes and tumor suppressor genes. Our group identified, in previous studies, some miRNAs that are differentially expressed in GC when compared to the gastric mucosa without cancer, including hsa-miR-29c and hsa-miR-135b. The aim of the study was to modulate the expression of the miRNAs hsa-miR-29c-5p and hsa-miR-135b-5p and evaluate the expression of their target genes in 2D and 3D cell cultures. METHODS: hsa-miR-29c-5p and hsa-miR-135b-5p expression profiles were modulated by transfecting mimics and antimiRs, respectively, in 2D and 3D cell cultures. The expression of the proteins coded by the genes CDC42, DNMT3A (target genes of hsa-miR-29c-5p) and APC (target gene of hsa-miR-135b-5p) were measured by Western Blot. RESULTS: Results showed that mimics and antimiRs transfection significantly altered the expression of both miRNAs, increasing the expression of hsa-miR-29c-5p and reducing the expression of hsa-miR-135b-5p, especially in the 3D culture of the cell lines. When analyzing the proteins expression, we observed that AGP01 and AGP03 cell lines transfected with mimics had a reduction in the levels of CDC42 and DNMT3A and all three cell lines transfected with antimiRs had an increase in the expression of the protein APC. CONCLUSION: We concluded that three-dimensional culture can be a more representative in vitro model that resembles better the in vivo reality. Our results also showed that hsa-miR-29c-5p is an important regulator of CDC42 and DNMT3A genes in the intestinal subtype gastric cancer and hsa-miR-135b-5p regulates the APC gene in both intestinal and diffuse subtypes of GC. Dysregulation in their expression, and consequently in their respectively signaling pathways, shows how these miRNAs can influence the carcinogenesis of different histological subtypes of gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes APC , MicroRNAs/genética , Interferência de RNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Gradação de Tumores , Estadiamento de Neoplasias , Transcriptoma
6.
Front Genet ; 15: 1320161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343694

RESUMO

Leprosy, or Hansen's Disease, is a chronic infectious disease caused by Mycobacterium leprae that affects millions of people worldwide. Despite persistent efforts to combat it leprosy remains a significant public health concern particularly in developing countries. The underlying pathophysiology of the disease is not yet fully understood hindering the development of effective treatment strategies. However, recent studies have shed light on the potential role of microRNAs (miRNAs), small non-coding RNA molecules that can regulate gene expression, as promising biomarkers in various disease, including leprosy. This study aimed to validate a set of nine circulating miRNAs to propose new biomarkers for early diagnosis of the disease. Hsa-miR-16-5p, hsa-miR-106b-5p, hsa-miR-1291, hsa-miR-144-5p, and hsa-miR-20a-5p showed significant differential expression between non-leprosy group (non-LP) and leprosy group (LP), accurately discriminating between them (AUC > 0.75). In addition, our study revealed gender-based differences in miRNA expression in LP. Notably, hsa-miR-1291 showed higher expression in male LP, suggesting its potential as a male-specific biomarker. Similarly, hsa-miR-16-5p and hsa-miR-20a-5p displayed elevated expression in female LP, indicating their potential as female-specific biomarkers. Additionally, several studied miRNAs are involved in the dysregulation of apoptosis, autophagy, mitophagy, cell cycle, and immune system in leprosy. In conclusion, the validation of miRNA expression highlights several miRNAs as potential biomarkers for early diagnosis and provides new insights into the pathogenesis of the disease.

7.
iScience ; 27(9): 110835, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39297167

RESUMO

Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in Parkinson's disease (PD) that negatively impact the overall well-being of people with this disease. The molecular mechanisms involved in LID were investigated through whole-blood transcriptomic analysis for differential gene expression and identification of new co-expression and differential co-expression networks. We found six differentially expressed genes in patients with LID, and 13 in patients without LID. We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23 gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroinflammation. We observed significant changes in disease progression, consistent with previous findings of maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic pro-inflammatory state in the brain.

8.
Cancer Med ; 12(18): 19279-19290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644825

RESUMO

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive form of cancer unresponsive to androgen deprivation therapy (ADT) that spreads quickly to other organs. Despite reduced androgen levels after ADT, mCRPC development and lethality continues to be conducted by the androgen receptor (AR) axis. The maintenance of AR signaling in mCRPC is a result of AR alterations, androgen intratumoral production, and the action of regulatory elements, such as noncoding RNAs (ncRNAs). ncRNAs are key elements in cancer signaling, acting in tumor growth, metabolic reprogramming, and tumor progression. In prostate cancer (PCa), the ncRNAs have been reported to be associated with AR expression, PCa proliferation, and castration resistance. In this study, we aimed to reconstruct the lncRNA-centered regulatory network of mCRPC and identify the lncRNAs which act as master regulators (MRs). METHODS: We used publicly available RNA-sequencing to infer the regulatory network of lncRNAs in mCRPC. Five gene signatures were employed to conduct the master regulator analysis. Inferred MRs were then subjected to functional enrichment and symbolic regression modeling. The latter approach was applied to identify the lncRNAs with greater predictive capacity and potential as a biomarker in mCRPC. RESULTS: We identified 31 lncRNAs involved in cellular proliferation, tumor metabolism, and invasion-metastasis cascade. SNHG18 and HELLPAR were the highlights of our results. SNHG18 was downregulated in mCRPC and enriched to metastasis signatures. It accurately distinguished both mCRPC and primary CRPC from normal tissue and was associated with epithelial-mesenchymal transition (EMT) and cell-matrix adhesion pathways. HELLPAR consistently distinguished mCRPC from primary CRPC and normal tissue using only its expression. CONCLUSION: Our results contribute to understanding the regulatory behavior of lncRNAs in mCRPC and indicate SNHG18 and HELLPAR as master regulators and potential new diagnostic targets in this tumor.


Assuntos
Neoplasias de Próstata Resistentes à Castração , RNA Longo não Codificante , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Longo não Codificante/genética , Androgênios , Antagonistas de Androgênios , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica
9.
Adv Sci (Weinh) ; 10(22): e2301802, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217832

RESUMO

Epithelial-mesenchymal transition (EMT) is a reversible transcriptional program invoked by cancer cells to drive cancer progression. Transcription factor ZEB1 is a master regulator of EMT, driving disease recurrence in poor-outcome triple negative breast cancers (TNBCs). Here, this work silences ZEB1 in TNBC models by CRISPR/dCas9-mediated epigenetic editing, resulting in highly-specific and nearly complete suppression of ZEB1 in vivo, accompanied by long-lasting tumor inhibition. Integrated "omic" changes promoted by dCas9 linked to the KRAB domain (dCas9-KRAB) enabled the discovery of a ZEB1-dependent-signature of 26 genes differentially-expressed and -methylated, including the reactivation and enhanced chromatin accessibility in cell adhesion loci, outlining epigenetic reprogramming toward a more epithelial state. In the ZEB1 locus transcriptional silencing is associated with induction of locally-spread heterochromatin, significant changes in DNA methylation at specific CpGs, gain of H3K9me3, and a near complete erasure of H3K4me3 in the ZEB1 promoter. Epigenetic shifts induced by ZEB1-silencing are enriched in a subset of human breast tumors, illuminating a clinically-relevant hybrid-like state. Thus, the synthetic epi-silencing of ZEB1 induces stable "lock-in" epigenetic reprogramming of mesenchymal tumors associated with a distinct and stable epigenetic landscape. This work outlines epigenome-engineering approaches for reversing EMT and customizable precision molecular oncology approaches for targeting poor outcome breast cancers.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Recidiva Local de Neoplasia/genética , Fatores de Transcrição/genética , Epigênese Genética/genética
10.
Front Public Health ; 11: 1186463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790714

RESUMO

Introduction: After three years since the beginning of the pandemic, the new coronavirus continues to raise several questions regarding its infectious process and host response. Several mutations occurred in different regions of the SARS-CoV-2 genome, such as in the spike gene, causing the emergence of variants of concern and interest (VOCs and VOIs), of which some present higher transmissibility and virulence, especially among patients with previous comorbidities. It is essential to understand its spread dynamics to prevent and control new biological threats that may occur in the future. In this population_based retrospective observational study, we generated data and used public databases to understand SARS-CoV-2 dynamics. Methods: We sequenced 1,003 SARS-CoV-2 genomes from naso-oropharyngeal swabs and saliva samples from Pará from May 2020 to October 2022. To gather epidemiological data from Brazil and the world, we used FIOCRUZ and GISAID databases. Results: Regarding our samples, 496 (49.45%) were derived from female participants and 507 (50.55%) from male participants, and the average age was 43 years old. The Gamma variant presented the highest number of cases, with 290 (28.91%) cases, followed by delta with 53 (5.28%). Moreover, we found seven (0.69%) Omicron cases and 651 (64.9%) non-VOC cases. A significant association was observed between sex and the clinical condition (female, p = 8.65e-08; male, p = 0.008961) and age (p = 3.6e-10). Discussion: Although gamma had been officially identified only in December 2020/January 2021, we identified a gamma case from Belém (capital of Pará State) dated May 2020 and three other cases in October 2020. This indicates that this variant was circulating in the North region of Brazil several months before its formal identification and that Gamma demonstrated its actual transmission capacity only at the end of 2020. Furthermore, the public data analysis showed that SARS-CoV-2 dispersion dynamics differed in Brazil as Gamma played an important role here, while most other countries reported a new infection caused by the Delta variant. The genetic and epidemiological information of this study reinforces the relevance of having a robust genomic surveillance service that allows better management of the pandemic and that provides efficient solutions to possible new disease-causing agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Masculino , Adulto , SARS-CoV-2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , Análise de Dados
11.
J Nanosci Nanotechnol ; 12(3): 2661-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755105

RESUMO

In this work, it is demonstrated how a novel technique based on temperature-programmed chemical vapor deposition (TPCVD) can be used to investigate the synthesis of carbon nanotubes (CNTs) from methane on a classic catalyst FeMo(x)/MgO (x = 0.07, 0.35 and 1.00). TPCVD monitors carbon deposition by measuring H2 formed during CH4 decomposition and affords information on the different catalytic species, deactivation process, reaction kinetics and carbon yields. The obtained results showed for FeMgO catalyst a simple TPCVD peak related to the production of carbon beginning at 760 degrees C with maximum at 800 degrees C followed by a rapid deactivation resulting in a low carbon yield. The addition of Mo to Fe/MgO catalyst completely changes the TPCVD profile with the formation of a new catalytic species active at temperatures higher than 900 degrees C, which is stable and continuously decomposes CH4 to produce high carbon yields. Raman, TG/DTG, Mössbauer, SEM, TEM, XRD and TPR analyses suggested that this active catalytic phase is likely related to Fe-Mo and Fe-Mo-C phases active to produce single wall and mainly multiwall carbon nanotubes.

12.
Cancers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551612

RESUMO

Hereditary gastric cancers (HGCs) are supposed to be rare and difficult to identify. Nonetheless, many cases of young patients with gastric cancer (GC) fulfill the clinical criteria for considering this diagnosis but do not present the defined pathogenic mutations necessary to meet a formal diagnosis of HGC. Moreover, GC in young people is a challenging medical situation due to the usual aggressiveness of such cases and the potential risk for their relatives when related to a germline variant. Aiming to identify additional germline alterations that might contribute to the early onset of GC, a complete exome sequence of blood samples from 95 GC patients under 50 and 94 blood samples from non-cancer patients was performed and compared in this study. The number of identified germline mutations in GC patients was found to be much higher than that from individuals without a cancer diagnosis. Specifically, the number of high functional impact mutations, including those affecting genes involved in medical diseases, cancer hallmark genes, and DNA replication and repair processes, was much higher, strengthening the hypothesis of the potential causal role of such mutations in hereditary cancers. Conversely, classically related HGC mutations were not found and the number of mutations in genes in the CDH1 pathway was not found to be relevant among the young GC patients, reinforcing the hypothesis that existing alternative germline contributions favor the early onset of GC. The LILRB1 gene variants, absent in the world's cancer datasets but present in high frequencies among the studied GC patients, may represent essential cancer variants specific to the Amerindian ancestry's contributions. Identifying non-reported GC variants, potentially originating from under-studied populations, may pave the way for additional discoveries and translations to clinical interventions for GC management. The newly proposed approaches may reduce the discrepancy between clinically suspected and molecularly proven hereditary GC and shed light on similar inconsistencies among other cancer types. Additionally, the results of this study may support the development of new blood tests for evaluating cancer risk that can be used in clinical practice, helping physicians make decisions about strategies for surveillance and risk-reduction interventions.

13.
Cancers (Basel) ; 14(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805051

RESUMO

Circular RNAs (circRNAs) are a class of long non-coding RNAs that have the ability to sponge RNA-Binding Proteins (RBPs). Triple-negative breast cancer (TNBC) has very aggressive behavior and poor prognosis for the patient. Here, we aimed to characterize the global expression profile of circRNAs in TNBC, in order to identify potential risk biomarkers. For that, we obtained RNA-Seq data from TNBC and control samples and performed validation experiments using FFPE and frozen tissues of TNBC patients and controls, followed by in silico analyses to explore circRNA-RBP interactions. We found 16 differentially expressed circRNAs between TNBC patients and controls. Next, we mapped the RBPs that interact with the top five downregulated circRNAs (hsa_circ_0072309, circ_0004365, circ_0006677, circ_0008599, and circ_0009043) and hsa_circ_0000479, resulting in a total of 16 RBPs, most of them being enriched to pathways related to cancer and gene regulation (e.g., AGO1/2, EIF4A3, ELAVL1, and PTBP1). Among the six circRNAs, hsa_circ_0072309 was the one that presented the most confidence results, being able to distinguish TNBC patients from controls with an AUC of 0.78 and 0.81, respectively. This circRNA may be interacting with some RBPs involved in important cancer-related pathways and is a novel potential risk biomarker of TNBC.

14.
Front Endocrinol (Lausanne) ; 13: 1033809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506063

RESUMO

Background: Considering the potential role of miRNAs as biomarkers and their interaction with both nuclear and mitochondrial genes, we investigated the miRNA expression profile in type 1 diabetes (T1DM) patients, including the pathways in which they are involved considering both nuclear and mitochondrial functions. Methods: We analyzed samples of T1DM patients and control individuals (normal glucose tolerance) by high throughput miRNA sequencing (miRNome). Next, five miRNAs - hsa-miR-26b-5p, hsa-let-7i-5p, hsa-miR-143-3p, hsa-miR-501-3p and hsa-miR-100-5p - were validated by RT-qPCR. The identification of target genes was extracted from miRTarBase and mitoXplorer database. We also performed receiver operating characteristic (ROC) curves and miRNAs that had an AUC > 0.85 were considered potential biomarkers. Results: Overall, 41 miRNAs were differentially expressed in T1DM patients compared to control. Hsa-miR-21-5p had the highest number of predicted target genes and was associated with several pathways, including insulin signaling and apoptosis. 34.1% (14/41) of the differentially expressed miRNAs also targeted mitochondrial genes, and 80.5% (33/41) of them targeted nuclear genes involved in the mitochondrial metabolism. All five validated miRNAs were upregulated in T1DM. Among them, hsa-miR-26b-5p showed AUC>0.85, being suggested as potential biomarker to T1DM. Conclusion: Our results demonstrated 41 DE miRNAs that had a great accuracy in discriminating T1DM and control group. Furthermore, we demonstrate the influence of these miRNAs on numerous metabolic pathways, including mitochondrial metabolism. Hsa-miR-26b-5p and hsa-miR-21-5p were highlighted in our results, possibly acting on nuclear and mitochondrial dysfunction and, subsequently, T1DM dysregulation.


Assuntos
Diabetes Mellitus Tipo 1 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores
15.
NPJ Biofilms Microbiomes ; 7(1): 65, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354062

RESUMO

Shifts in subsistence strategy among Native American people of the Amazon may be the cause of typically western diseases previously linked to modifications of gut microbial communities. Here, we used 16S ribosomal RNA sequencing to characterise the gut microbiome of 114 rural individuals, namely Xikrin, Suruí and Tupaiú, and urban individuals from Belém city, in the Brazilian Amazon. Our findings show the degree of potential urbanisation occurring in the gut microbiome of rural Amazonian communities characterised by the gradual loss and substitution of taxa associated with rural lifestyles, such as Treponema. Comparisons to worldwide populations indicated that Native American groups are similar to South American agricultural societies and urban groups are comparable to African urban and semi-urban populations. The transitioning profile observed among traditional populations is concerning in light of increasingly urban lifestyles. Lastly, we propose the term "tropical urban" to classify the microbiome of urban populations living in tropical zones.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Metagenômica , Urbanização , Bactérias/genética , Biodiversidade , Brasil , Microbioma Gastrointestinal/genética , Humanos , Estilo de Vida , RNA Ribossômico 16S/genética , População Rural , População Urbana
16.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708088

RESUMO

Circular RNAs (circRNAs) are a new class of long noncoding RNAs able to perform multiple functions, including sponging microRNAs (miRNAs) and RNA-Binding Proteins (RBPs). They play an important role in gastric carcinogenesis, but its involvement during gastric cancer (GC) development and progression are not well understood. We gathered miRNA and/or RBPs sponge circRNAs present in GC, and accessed their biological roles through functional enrichment of their target genes or ligand RBPs. We identified 54 sponge circRNAs in GC that are able to sponge 51 miRNAs and 103 RBPs. Then, we evaluated their host gene expression using The Cancer Genome Atlas (TCGA) database and observed that COL1A2 is the most overexpressed gene, which may be due to circHIPK3/miR-29b-c/COL1A2 axis dysregulation. We identified 27 GC-related pathways that may be affected mainly by circPVT1, circHIPK3 and circNF1. Our results indicate that circHIPK3/miR-107/BDNF/LIN28 axis may mediate chemoresistance in GC, and that circPVT1, circHIPK3, circNF1, ciRS-7 and circ_0000096 appear to be involved in gastrointestinal cancer development. Lastly, circHIPK3, circNRIP1 and circSMARCA5 were identified in different ethnic populations and may be ubiquitous modulators of gastric carcinogenesis. Overall, the studied sponge circRNAs are part of a complex RBP-circRNA-miRNA-mRNA interaction network, and are involved in the establishment, chemoresistance and progression of GC.

17.
Epigenomics ; 12(22): 1957-1968, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33242258

RESUMO

Aim: Circular RNAs (circRNAs) are dysregulated in complex diseases, so we investigated their global expression profile in stroke. Material & methods: Public RNA-Seq data of human ischemic stroke lesion tissues and controls were used to perform the global expression analysis. Target RNA binding proteins and microRNAs were predicted in silico. Functional enrichment analysis was performed to infer the circRNAs' potential roles. Results: We found that circRNAs are potentially involved in synaptic components and transmission, inflammation and ataxia. An integrative analysis revealed that hsa_circ_0078299 and FXN may be major players in the molecular stroke-context. Conclusion: Our results suggest a broad involvement of circRNAs in some stroke-related processes, indicating their potential as therapeutic targets to allow neuroprotection and brain recovery.


Assuntos
Regulação da Expressão Gênica , AVC Isquêmico/genética , RNA Circular/fisiologia , Epigênese Genética , Humanos , AVC Isquêmico/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq
18.
Leuk Res Rep ; 13: 100188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31867206

RESUMO

Acute Lymphoblastic Leukemia (ALL) is the most common childhood neoplasia. Studies have shown that susceptibility to ALL may be modulated by genetic variables. Our study investigated 21 genetic variants in the susceptibility of the population of the Brazilian Amazon region to B-cell ALL. The variants of the genes GGH, CEBPE, ARID5B, MTHFR and MTHFD1 were related to a protective effect against the development of ALL, whereas the variant of the gene ATIC was associated with a risk effect. The results suggest that genetic variants analyzed modulate of the risk of developing ALL in the studied population.

19.
PLoS One ; 15(4): e0231651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294118

RESUMO

INTRODUCTION: The nudix hydrolase 15 (NUDT15) gene acts in the metabolism of thiopurine, by catabolizing its active metabolite thioguanosine triphosphate into its inactivated form, thioguanosine monophosphate. The frequency of alternative NUDT15 alleles, in particular those that cause a drastic loss of gene function, varies widely among geographically distinct populations. In the general population of northern Brazilian, high toxicity rates (65%) have been recorded in patients treated with the standard protocol for acute lymphoblastic leukemia, which involves thiopurine-based drugs. The present study characterized the molecular profile of the coding region of the NUDT15 gene in two groups, non-admixed Amerindians and admixed individuals from the Amazon region of northern Brazil. METHODS: The entire NUDT15 gene was sequenced in 64 Amerindians from 12 Amazonian groups and 82 admixed individuals from northern Brazil. The DNA was extracted using phenol-chloroform. The exome libraries were prepared using the Nextera Rapid Capture Exome (Illumina) and SureSelect Human All Exon V6 (Agilent) kits. The allelic variants were annotated in the ViVa® (Viewer of Variants) software. RESULTS: Four NUDT15 variants were identified: rs374594155, rs1272632214, rs147390019, andrs116855232. The variants rs1272632214 and rs116855232 were in complete linkage disequilibrium, and were assigned to the NUDT15*2 genotype. These variants had high frequencies in both our study populations in comparison with other populations catalogued in the 1000 Genomes database. We also identified the NUDT15*4 haplotype in our study populations, at frequencies similar to those reported in other populations from around the world. CONCLUSION: Our findings indicate that Amerindian and admixed populations from northern Brazil have high frequencies of the NUDT15 haplotypes that alter the metabolism profile of thiopurines.


Assuntos
Povos Indígenas/genética , Pirofosfatases/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Brasil , Humanos , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirofosfatases/metabolismo
20.
Front Genet ; 10: 592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275362

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play an important role in gastric carcinogenesis and have been associated with gastric field cancerization; however, their role is not fully understood in this process. We performed the miRNome sequencing of non-cancerous, adjacent to tumor and gastric cancer samples to understand the involvement of these small RNAs in gastric field cancerization. METHODS: We analyzed samples of patients without cancer as control (non-cancerous gastric samples) and adjacent to cancer and gastric cancer paired samples, and considered miRNAs with |log2(fold change)| > 2 and Padj < 0.05 to be statistically significant. The identification of target genes, functional analysis and enrichment in KEGG pathways were realized in the TargetCompare, miRTargetLink, and DAVID tools. We also performed receiver operating characteristic (ROC) curves and miRNAs that had an AUC > 0.85 were considered to be potential biomarkers. RESULTS: We found 14 miRNAs exclusively deregulated in gastric cancer, of which six have potential diagnostic value for advanced disease. Nine miRNAs with known tumor suppressor activities (TS-miRs) were deregulated exclusively in adjacent tissue. Of these, five have potential diagnostic value for the early stages of gastric cancer. Functional analysis of these TS-miRs revealed that they regulate important cellular signaling pathways (PI3K-Akt, HIF-1, Ras, Rap1, ErbB, and MAPK signaling pathways), that are involved in gastric carcinogenesis. Seven miRNAs were differentially expressed in both gastric cancer and adjacent regarding to non-cancerous tissues; among them, hsa-miR-200a-3p and hsa-miR-873-5p have potential diagnostic value for early and advanced stages of the disease. Only hsa-miR-196a-5p was differentially expressed between adjacent to cancer and gastric cancer tissues. In addition, the other miRNAs identified in this study were not differentially expressed between adjacent to cancer and gastric cancer, suggesting that these tissues are very similar and that share these molecular changes. CONCLUSION: Our results show that gastric cancer and adjacent tissues have a similar miRNA expression profile, indicating that studied miRNAs are intimately associated with field cancerization in gastric cancer. The overexpression of TS-miRs in adjacent tissues may be a barrier against tumorigenesis within these pre-cancerous conditions prior to the eventual formation or relapse of a tumor. Additionally, these miRNAs have a great accuracy in discriminating non-cancerous from adjacent to tumor and cancer tissues and can be potentially useful as biomarkers for gastric cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa