Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34640898

RESUMO

Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis of interfacial properties related to bio-recognition events occurring at the electrode surface, such as antibody-antigen recognition, substrate-enzyme interaction, or whole cell capturing. Thus, EIS could be exploited in several important biomedical diagnosis and environmental applications. However, the EIS is one of the most complex electrochemical methods, therefore, this review introduced the basic concepts and the theoretical background of the impedimetric technique along with the state of the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer, and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers, etc. Through this review article, intensive literature review is provided to highlight the impact of nanomaterials on enhancing the analytical features of impedimetric biosensors.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Reprodutibilidade dos Testes
2.
RSC Adv ; 14(19): 13142-13156, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655478

RESUMO

In our current research, a new type of functional nanocomposites known as poly(methyl methacrylate/N,N-dimethyl aminoethylmethacrylate/(E)-2-cyano-N-cyclohexyl-3 (dimethylamino) acrylamide) [poly(MMA/DMAEMA/CHAA)] has been developed. These nanocomposites were created using microemulsion polymerization in conjunction with synthesized titanium dioxide (TiO2), and vanadium pentoxide (V2O5) nanoparticles. To understand the physio-chemical characteristics of the poly(MMA/DMAEMA/CHAA) and the metal oxide nanoparticles (MOs) integrated within them, various analytical techniques were employed. These techniques included Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and electrical approaches such as cyclic voltammetry (CV) and electrical impedance spectra (EIS). Based on the TEM results, nanospheres with a well-defined structure were developed for both the pure polymer and its composite with sizes ranging from 45 to 75 nm. All the TiO2 and V2O5-based nanocomposites showed significantly enhanced electrical attributes, with capacitance values surpassing those of the poly(MMA/DMAEMA/CHAA) nanosphere assemblies by a considerable margin. As a result, both direct electron transfer and direct hydrogen peroxide identification were evaluated for the nanocomposites. The amperometry results demonstrated a lower detection limit of 0.0085 µM and a rapid linear sensitivity in the range of 1 to 800 µM. The greatly improved electrolytic qualities of these nanocomposites make them suitable for various applications in fields such as battery storage, sensors, and biosensors.

3.
Sci Rep ; 14(1): 1849, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253766

RESUMO

Perovskite oxide materials, specifically MgTiO3 (MT) and Li-doped MgTiO3 (MTxLi), were synthesized via a sol-gel method and calcination at 800 °C. This study explores the impact of varying Li doping levels (x = 0, 0.01, 0.05, and 0.1) on the crystalline structure and properties of MgTiO3. X-ray diffraction analysis revealed a well-defined rhombohedral MgTiO3 phase. Optical diffuse reflectance measurements provided insights into energy gap values, refractive index, and dielectric constant. Li+ doping enhanced the electrical properties of MgTiO3, with a notable phase transition observed at 50 °C. The study investigated impedance and AC conductivity under varying temperature and frequency conditions (25-120 °C, 4 Hz to 8 MHz). Electrochemical analysis through cyclic voltammetry and electrochemical impedance spectroscopy confirmed highly electrocatalytic properties for MTxLi, particularly when modified onto screen-printed electrodes. This work not only advances the understanding of Li-doped MgTiO3 nanostructures but also highlights their significant potential for direct electrochemical applications, particularly in the realm of energy storage.

4.
Sci Rep ; 13(1): 2034, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739320

RESUMO

A new electrochemical impedimetric sensor for direct detection of urea was designed and fabricated using nanostructured screen-printed electrodes (SPEs) modified with CuO/Co3O4 @MWCNTs. A facile and simple hydrothermal method was achieved for the chemical synthesis of the CuO/Co3O4 nanocomposite followed by the integration of MWCNTs to be the final platform of the urea sensor. A full physical and chemical characterization for the prepared nanomaterials were performed including Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle, scanning electron microscope (SEM) and transmission electron microscopy (TEM). Additionally, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the electrochemical properties the modified electrodes with the nanomaterials at different composition ratios of the CuO/Co3O4 or MWCNTs. The impedimetric measurements were optimized to reach a picomolar sensitivity and high selectivity for urea detection. From the calibration curve, the linear concentration range of 10-12-10-2 M was obtained with the regression coefficient (R2) of 0.9961 and lower detection limit of 0.223 pM (S/N = 5). The proposed sensor has been used for urea analysis in real samples. Thus, the newly developed non-enzymatic sensor represents a considerable advancement in the field for urea detection, owing to the simplicity, portability, and low cost-sensor fabrication.

5.
Sci Rep ; 13(1): 9048, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270658

RESUMO

Talented di-phase ferrite/ferroelectric BaTi0.7Fe0.3O3@NiFe2O4 (BFT@NFO) in oval nano-morphology was chemically synthesized using controlled sol-gel processes and calcined at 600 °C. The effects of shielding using NiFe2O4 (NFO) nanoparticles on the microstructure, phase transition, thermal, and relative permittivity of BaTi0.7Fe0.3O3 (BTF) nano-perovskite were systematically explored. X-ray diffraction patterns and Full-Prof software exhibited the forming of the BaTi2Fe4O11 hexagonal phase. TEM and SEM images demonstrated that the coating of BaTi0.7Fe0.3O3 has been successfully controlled with exquisite nano-oval NiFe2O4 shapes. The NFO shielding can significantly promote the thermal stability and the relative permittivity of BFT@NFO pero-magnetic nanocomposites and lowers the Curie temperature. Thermogravimetric and optical analysis were used to test the thermal stability and estimate the effective optical parameters. Magnetic studies showed a decrease in saturation magnetization of NiFe2O4 NPs compared to their bulk system, which is attributed to surface spin disorder. Herein, characterization and the sensitive electrochemical sensor were constructed for the evaluation of peroxide oxidation detection using the chemically adjusted nano-ovals barium titanate-iron@nickel ferrite nanocomposites. Finally, The BFT@NFO exhibited excellent electrochemical properties which can be ascribed to this compound possessing two electrochemical active components and/or the nano-ovals structure of the particles which can further improve the electrochemistry through the possible oxidation states and the synergistic effect. The result advocates that when the BTF is shielded with NFO nanoparticles the thermal, dielectric, and electrochemical properties of nano-oval BaTi0.7Fe0.3O3@NiFe2O4 nanocomposites can be synchronously developed. Thus, the production of ultrasensitive electrochemical nano-systems for the determination of hydrogen peroxide is of extensive significance.

6.
Sci Rep ; 12(1): 20181, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424461

RESUMO

Differential pulse voltammetry (DPV) using gallium oxide nanoparticles/carbon paste electrode (Ga2O3/CPE) was utilized for the simultaneous detection of Pb2+, Cd2+ and Hg2+ ions. Ga2O3NPs were chemically synthesized and fully characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Through the assay optimization, electrochemical screening of different nanomaterials was carried out using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in order to determine the best electrode modifier that will be implemented for the present assay. Consequently, various parameters such as electrode matrix composition, electrolyte, deposition potential, and deposition time were optimized and discussed. Accordingly, the newly developed sensing platform showed a wide dynamic linear range of 0.3-80 µM with detection limits (LODs) of 84, 88 and 130 nM for Pb2+, Cd2+ and Hg2+ ions, respectively. While the corresponding limit of quantification (LOQ) values were 280, 320 and 450 nM. Sensors selectivity was investigated towards different non-targeting metal ions, whereas no obvious cross-reactivity was obtained. Eventually, applications on real samples were performed, while excellent recoveries for the multiple metal ions were successfully achieved.


Assuntos
Mercúrio , Nanopartículas , Cádmio , Chumbo , Íons , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa