Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(2): 333-348.e6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38295799

RESUMO

The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.


Assuntos
Infecções Bacterianas , Neuropeptídeos , Humanos , Receptores de Neuropeptídeos/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios
2.
bioRxiv ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253459

RESUMO

Antigenic variation, using large genomic repertoires of antigen-encoding genes, allows pathogens to evade host antibody. Many pathogens, including the African trypanosome Trypanosoma brucei, extend their antigenic repertoire through genomic diversification. While evidence suggests that T. brucei depends on the generation of new variant surface glycoprotein (VSG) genes to maintain a chronic infection, a lack of experimentally tractable tools for studying this process has obscured its underlying mechanisms. Here, we present a highly sensitive targeted sequencing approach for measuring VSG diversification. Using this method, we demonstrate that a Cas9-induced DNA double-strand break within the VSG coding sequence can induce VSG recombination with patterns identical to those observed during infection. These newly generated VSGs are antigenically distinct from parental clones and thus capable of facilitating immune evasion. Together, these results provide insight into the mechanisms of VSG diversification and an experimental framework for studying the evolution of antigen repertoires in pathogenic microbes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa