Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Environ Eng (New York) ; 148(3): 1-11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221463

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are increasingly of interest to drinking water utilities due to state regulations, the release of federal and state health advisories, and public concern. Pilot-scale data were fitted for 16 PFAS species and five commercial-activated carbons using an open-source pore and surface diffusion model that includes an automated parameter-fitting tool. The estimated model parameters are presented, and an uncertainty analysis was evaluated considering the expected temporal variability of influent concentrations. Expected treatment performance differed between two seasons in the pilot phase for the same carbon, which was not captured by modeled uncertainty. However, modeling results can support a utility's decision to choose activated carbon, and make design and operational decisions that can address changing water production rates and treatment goals. For the utility that undertook this pilot study and their desired treatment goals, granular activated carbon (GAC) was found to be an effective treatment technology for PFAS removal.

2.
J Environ Eng (New York) ; 145(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801447

RESUMO

Polymeric materials such as polyethylene are used extensively for indoor drinking water applications. These materials are subject to permeation by organic compounds such as those found in petroleum products and industrial chemicals, which can result in water quality issues with potential health effects. Although flushing is a common decontamination technique, disagreements and knowledge gaps in the scientific literature complicate prediction of how much flushing may be required to address organic contamination incidents. This paper utilizes a numerical solution to the diffusion equation to predict flushing decontamination times for toluene in cross-linked polyethylene tubing. Results suggest that for premise plumbing materials typically used for indoor drinking water applications, contaminated polyethylene tubing can be resistant to decontamination by flushing, possibly requiring days of continuous flushing to achieve contaminant removal to below regulatory levels.

3.
Risk Anal ; 34(3): 498-513, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102461

RESUMO

Intentional or accidental releases of contaminants into a water distribution system (WDS) have the potential to cause significant adverse health effects among individuals consuming water from the system. A flexible analysis framework is presented here for estimating the magnitude of such potential effects and is applied using network models for 12 actual WDSs of varying sizes. Upper bounds are developed for the magnitude of adverse effects of contamination events in WDSs and evaluated using results from the 12 systems. These bounds can be applied in cases in which little system-specific information is available. The combination of a detailed, network-specific approach and a bounding approach allows consequence assessments to be performed for systems for which varying amounts of information are available and addresses important needs of individual utilities as well as regional or national assessments. The approach used in the analysis framework allows contaminant injections at any or all network nodes and uses models that (1) account for contaminant transport in the systems, including contaminant decay, and (2) provide estimates of ingested contaminant doses for the exposed population. The approach can be easily modified as better transport or exposure models become available. The methods presented here provide the ability to quantify or bound potential adverse effects of contamination events for a wide variety of possible contaminants and WDSs, including systems without a network model.

4.
ACS ES T Water ; 3(8): 2247-2254, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37841341

RESUMO

Benzene contamination in drinking water systems affected by wildfires is a problem of emerging concern. Polyethylene pipes used in service lines and premise plumbing are vulnerable to permeation by benzene and can potentially cause challenges in sampling and remediation of contaminated systems. However, the kinetics and equilibria of the uptake of benzene by and release of benzene from pipes of differing polyethylene types and manufacturers are not well studied, leading to additional uncertainty when interpreting sampling data and selecting remediation options. This work addresses this data gap by providing diffusion and partitioning data for benzene and several varieties of polyethylene pipes, including field samples from water distribution systems. All polyethylene pipes that were studied exhibited similar partitioning behavior during benzene uptake and release, but some differences in kinetics were observed among pipes. However, these differences were of minor practical importance in the pipe contamination scenario examined in this work. The results of this study can be used in conjunction with diffusion modeling to inform remediation decisions for benzene-contaminated, polyethylene service lines, and premise plumbing.

5.
J Water Process Eng ; 53: 1-10, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37234354

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that have gained interest because some PFAS have been shown to have negative health effects and prolonged environmental and biological persistence. Chemicals classified as PFAS have a wide range of chemical moieties that impart widely variable properties, leading to a range of water treatment process efficacies. The Polanyi Potential Adsorption Theory was used to estimate Freundlich isotherm parameters to predict the efficacy of granular activated carbon (GAC) treatment for 428 PFAS chemicals for which the vast majority had no previously published treatment data. This method accounts for the physical/chemical characteristics of the individual PFAS beyond molecular weight or chain length that have previously been employed. From a statistical analysis of available data and model results, many of the 428 PFAS were predicted to be effectively treatable by GAC. Although not directly applicable to full-scale design, the approach demonstrates a systematic method for predicting the effectiveness of GAC where isotherm or column data are not available. This then can be used to prioritize future research.

6.
J Hazard Mater Adv ; 3: 1-9, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37850064

RESUMO

When contamination incidents occur in drinking water distribution systems, utilities need to select the remediation technologies most suited to their system-specific conditions and the contaminants of concern. Technology selection often involves balancing competing priorities. Multi-Criteria Decision Analysis (MCDA) is a promising approach that has been used extensively in other industries but not yet in drinking water system remediation. This paper discusses development of a computer-based tool that allows practitioners to leverage the Analytical Hierarchy Process (AHP), a well-established method of MCDA, to select remediation technologies based on their effectiveness and their compatibility with the practitioner's project objectives. This paper focuses on benzene, a contaminant implicated for many years in contamination incidents following spills and, more recently, wildfires.

7.
Chemosphere ; 238: 124550, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31425868

RESUMO

Large volumes of contaminated water are produced via intentional and unintentional incidents, including terrorist attacks, natural disasters and accidental spills. Contaminated waters could contain harmful chemicals, which present management and disposal challenges. This study investigates three Advanced Oxidation Processes (AOPs) - UV/H2O2, O3/H2O2, and electrochemical oxidation using a boron-doped diamond (BDD) anode - to treat eleven contaminants including herbicides, pesticides, pharmaceuticals, and flame retardant compounds. To address treatment and toxicity concerns, this study focuses on the resulting microbial toxicity via Microtox® toxicity and Nitrification Inhibition tests. The results suggest four functional Microtox® toxicity categories upon AOP treatment, which are useful for streamlining AOP selection for specific applications. Except for one compound, the O3/H2O2 and UV/H2O2 AOPs achieved, within experimental error, 100% parent compound degradation during 2 h of treatment for all contaminants, as well as Microtox® toxicities that declined below 10% by the end of the treatment. In addition, anodic oxidation with a BDD electrode exhibited slower degradation and some increases in Microtox® toxicity. Only one compound exhibited above 50% Nitrification Inhibition, indicating the robustness of activated sludge to many contaminated and AOP-treated waters. These results indicate that AOP pre-treatment can be a viable strategy to facilitate drain disposal of contaminated waters, but that eco-toxicity may remain a concern.


Assuntos
Reatores Biológicos , Diamante/química , Eletrodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Boro/química , Herbicidas/análise , Herbicidas/química , Herbicidas/toxicidade , Peróxido de Hidrogênio/química , Oxirredução , Praguicidas/análise , Praguicidas/química , Praguicidas/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
8.
J Environ Radioact ; 208-209: 105858, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31202509

RESUMO

The release of radiological material from a nuclear incident has the potential to cause extensive radiological contamination requiring rapid decontamination. A promising method for rapid remediation is the use of pressure washers to decontaminate building and street surfaces. Pressure washers utilize both physical removal through surface ablation and chemical removal through desorption of bonded radionuclides. To understand the extent that each removal mechanism is present, overall removals, depth profiles, and wash water were analyzed from the pressure washing of various surfaces contaminated with cesium, strontium, and europium. Removals were dependent on surface type with over 80% of the radionuclides removed from concrete, 50-80% from asphalt, and only 20-25% from brick. Generally, the closer the radionuclide was to the surface of the material, the higher the removal, with europium being removed most readily followed by cesium then strontium, though some exceptions were evident. Comparing these removals and depth profiles of radionuclides in non-decontaminated coupons revealed that cesium and europium are mostly removed through surface ablation. Strontium, on the other hand, is desorbed from the surface, especially from brick and asphalt surfaces. Correspondingly, cesium and europium were attached to the particulates that were likely removed with the pressurized water. Strontium was primarily dissolved in the wash water, supporting the observation that the radionuclide is desorbed from each surface. Finally, the faster the surfaces were brought through the high pressure spray, the lower the removals, arising from decreases in both the physical and desorption mechanisms. Pressure washers were concluded to be a promising decontamination method during radiological incident relief. However, the surface and radionuclide identity must be considered when developing proper procedures.


Assuntos
Materiais de Construção , Descontaminação/métodos , Liberação Nociva de Radioativos
9.
Chemosphere ; 197: 135-141, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29339273

RESUMO

Intentional and unintentional contamination incidents, such as terrorist attacks, natural disasters, and accidental spills, can result in large volumes of contaminated water. These waters may require pre-treatment before disposal and assurances that treated waters will not adversely impact biological processes at wastewater treatment facilities, or receiving waters. Based on recommendations of an industrial workgroup, this study addresses such concerns by studying electrochemical advanced oxidation process (EAOP) pre-treatment for contaminated waters, using a boron-doped diamond (BDD) anode, prior to discharge to wastewater treatment facilities. Reaction conditions were investigated, and microbial toxicity was assessed using the Microtox® toxicity assay and the Nitrification Inhibition test. A range of contaminants were studied including herbicides, pesticides, pharmaceuticals and flame retardants. Resulting toxicities varied with supporting electrolyte from 5% to 92%, often increasing, indicating that microbial toxicity, in addition to parent compound degradation, should be monitored during treatment. These toxicity results are particularly novel because they systematically compare the microbial toxicity effects of a variety of supporting electrolytes, indicating some electrolytes may not be appropriate in certain applications. Further, these results are the first known report of the use of the Nitrification Inhibition test for this application. Overall, these results systematically demonstrate that anodic oxidation using the BDD anode is useful for addressing water contaminated with refractory organic contaminants, while minimizing impacts to wastewater plants or receiving waters accepting EAOP-treated effluent. The results of this study indicate nitrate can be a suitable electrolyte for incident response and, more importantly, serve as a baseline for site specific EAOP usage.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Boro/química , Diamante/química , Eletroquímica/métodos , Eletrodos , Eletrólitos , Herbicidas/química , Oxirredução , Estresse Oxidativo , Praguicidas , Águas Residuárias/química , Poluentes Químicos da Água/química
10.
Anal Chim Acta ; 982: 104-111, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28734349

RESUMO

The use of cyanuric acid as a biomarker for ingestion of swimming pool water may lead to quantitative knowledge of the volume of water ingested during swimming, contributing to a better understanding of disease resulting from ingestion of environmental contaminants. When swimming pool water containing chlorinated cyanurates is inadvertently ingested, cyanuric acid is excreted quantitatively within 24 h as a urinary biomarker of ingestion. Because the volume of water ingested can be quantitatively estimated by calculation from the concentration of cyanuric acid in 24 h urine samples, a procedure for preservation, cleanup, and analysis of cyanuric acid was developed to meet the logistical demands of large scale studies. From a practical stand point, urine collected from swimmers cannot be analyzed immediately, given requirements of sample collection, shipping, handling, etc. Thus, to maintain quality control to allow confidence in the results, it is necessary to preserve the samples in a manner that ensures as quantitative analysis as possible. The preservation and clean-up of cyanuric acid in urine is complicated because typical approaches often are incompatible with the keto-enol tautomerization of cyanuric acid, interfering with cyanuric acid sample preparation, chromatography, and detection. Therefore, this paper presents a novel integration of sample preservation, clean-up, chromatography, and detection to determine cyanuric acid in 24 h urine samples. Fortification of urine with cyanuric acid (0.3-3.0 mg/L) demonstrated accuracy (86-93% recovery) and high reproducibility (RSD < 7%). Holding time studies in unpreserved urine suggested sufficient cyanuric acid stability for sample collection procedures, while longer holding times suggested instability of the unpreserved urine. Preserved urine exhibited a loss of around 0.5% after 22 days at refrigerated storage conditions of 4 °C.


Assuntos
Biomarcadores/urina , Piscinas , Triazinas/urina , Água/química , Ingestão de Alimentos , Humanos , Reprodutibilidade dos Testes , Natação
11.
Int J Hyg Environ Health ; 208(4): 279-85, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16078642

RESUMO

Some strains of Penicillium chrysogenum produce a proteinaceous hemolysin, chrysolysinTM, when incubated on sheep's blood agar at 37 degrees C but not at 23 degrees C. However, 92% (11/12) of the indoor air isolates produced hemolysis but only 43% (3/7) of the non-indoor air isolates did so. Chrysolysin is an aggregating protein composed of approximately 2kDa monomers, contains one cysteine amino acid, and has an isoelectric point of 4.85. Treatment of murine macrophage cell line RAW 264.7 with purified chrysolysin caused statistically significant (T-test, p < 0.05) increased production of macrophage inflammatory protein-2 (MIP-2) in a dose dependent manner after 6 h treatment. This suggests that chrysolysin might act to promote the host's inflammatory response after P. chrysogenum exposures.


Assuntos
Proteínas Fúngicas/toxicidade , Proteínas Hemolisinas/toxicidade , Monocinas/biossíntese , Penicillium chrysogenum/química , Animais , Linhagem Celular , Quimiocina CXCL2 , Proteínas Fúngicas/isolamento & purificação , Proteínas Hemolisinas/isolamento & purificação , Hemólise , Inflamação , Camundongos , Penicillium chrysogenum/classificação , Temperatura
12.
Water Res ; 57: 127-39, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24709533

RESUMO

This study examined the ability of activated sludge (AS) to sorb and biodegrade ethylmethylphosphonic acid (EMPA) and malathion, a degradation product and surrogate, respectively, for an organophosphate chemical warfare agent. Sorption equilibrium isotherm experiments indicate that sorption of EMPA and malathion to AS is negligible. EMPA at a concentration of 1 mg L(-1) degraded by approximately 30% with apparent first-order kinetics, possibly via co-metabolism from nitrification. Heterotrophic bacteria and abiotic mechanisms, however, are largely responsible for malathion degradation also with apparent first-order kinetics. EMPA did not inhibit chemical oxygen demand (COD) oxidation or nitrification activity, although malathion did appear to induce a stress response resulting in inhibition of COD oxidation. The study also included a 30-day experiment in which malathion, at a concentration of 5 mg L(-1), was repeatedly fed to AS in bench-scale sequencing batch reactors (SBRs) operating at different solids retention times (SRTs). Peak malathion concentrations occurred at day 4.5, with the longer SRTs yielding greater peak malathion concentrations. The AS reduced the malathion concentrations to nearly zero by day 10 for all SRTs, even when the malathion concentration in the influent increased to 20.8 mg L(-1). The data suggest a biodegradation pathway for malathion involving an oxygenase. Phylogenetic analyses revealed that all samples had an abundance of Zoogloea, though there was greater bacterial diversity in the SBR with the SRT of 50 days. The SBR with an SRT of 9.5 days had an apparent reduction in the diversity of the bacterial community.


Assuntos
Bactérias/metabolismo , Malation/metabolismo , Microbiota , Organofosfonatos/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Absorção Fisico-Química , Bactérias/classificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Inseticidas/metabolismo , Espectrometria de Massas em Tandem
13.
J Forensic Sci ; 57(3): 636-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22211294

RESUMO

Since the early 1990s, the FBI Laboratory has sponsored Scientific Working Groups to improve discipline practices and build consensus among the forensic community. The Scientific Working Group on the Forensic Analysis of Chemical, Biological, Radiological and Nuclear Terrorism developed guidance, contained in this document, on issues forensic laboratories encounter when accepting and analyzing unknown samples associated with chemical terrorism, including laboratory capabilities and analytical testing plans. In the context of forensic analysis of chemical terrorism, this guidance defines an unknown sample and addresses what constitutes definitive and tentative identification. Laboratory safety, reporting issues, and postreporting considerations are also discussed. Utilization of these guidelines, as part of planning for forensic analysis related to a chemical terrorism incident, may help avoid unfortunate consequences not only to the public but also to the laboratory personnel.


Assuntos
Terrorismo Químico , Ciências Forenses/normas , Laboratórios/normas , Humanos , Controle de Qualidade , Gestão da Segurança/normas , Estados Unidos
14.
J Chromatogr A ; 1217(5): 676-82, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20022012

RESUMO

Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be observed. Some transformation products detected through the use of high performance liquid chromatography-electrospray mass spectrometry are consistent with the formation of N-chloro atrazine. The effects of applied chlorine, pH, and reaction time on the transformation reaction were studied to help understand the practical implications of the transformation on the accurate determination of atrazine in drinking waters. The errors in the determination of atrazine are a function of the type of dechlorinating agent applied during sample preparation and the analytical instrumentation utilized. When a reductive dechlorinating agent, such as sodium sulfite or ascorbic acid is used, the quantification of the atrazine can be inaccurate, ranging from 2-fold at pH 7.5 to 30-fold at pH 6.0. The results suggest HPLC/UV and ammonium chloride quenching may be best for accurate quantification. Hence, the results also appear to have implications for both compliance monitoring and health effects studies that utilize gas chromatography analysis with sodium sulfite or ascorbic acid as the quenching agent.


Assuntos
Atrazina/química , Cloro/química , Cromatografia Líquida de Alta Pressão/métodos , Abastecimento de Água/análise , Água/química , Halogenação , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Sensibilidade e Especificidade
15.
Environ Sci Technol ; 39(19): 7706-11, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16245848

RESUMO

Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.


Assuntos
Carvão Vegetal/química , Modelos Químicos , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Cinética , Compostos Orgânicos/análise
16.
Environ Sci Technol ; 36(20): 4288-94, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12387400

RESUMO

Leaching of particle-bound metals affects the ability of settling ponds and other engineered structures to remove metallic pollutants, and leaching behavior is related to particle size. In this investigation, water borne soil particles were leached and fractionated with a split-flow thin cell, and the metal loadings were quantified as a function of particle size. For comparison of the metal-loading curves, different empirical modeling procedures were investigated to convert the data to a precise functional form suitable for quantitative comparison of changes in differential loading as a function of particle size. Results of this investigation are presented for a soil sample before and after leaching caused by simulated acid rain conditions. Following simulated acid rain leaching, the shape of the differential distribution curves change, and these changes reflect the particle size mediated leaching behavior. For the soil used in this demonstration, simulated acid rain leaching shifted the differential loading toward larger particle sizes, and the magnitude of the shift varied significantly among the metals. Because settling rate decreases as the square of particle size, this could potentially affect management decisions for settling ponds receiving these particles. The high precision afforded by the analysis allows the development of insight into the leaching mechanisms through comparing "partial" acid rain leaching with "total recoverable" leaching by EPA Method 3050.


Assuntos
Chuva Ácida , Metais Pesados/química , Modelos Teóricos , Poluentes do Solo/análise , Engenharia , Metais Pesados/análise , Tamanho da Partícula , Solubilidade , Movimentos da Água
17.
Analyst ; 128(1): 88-97, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12572810

RESUMO

Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), normal Raman spectroscopy, and infrared spectroscopy using an attenuated total reflectance crystal (ATR-FTIR) coated with a thin film of an organometallic ion-exchange compound. Three of the five solid products were found by all techniques to contain perchlorate at the level of approximately 100-350 mg kg(-1). The remaining products did not contain perchlorate above the detection level of any of the techniques. Comparative analysis using several analytical techniques that depend on different properties of perchlorate allow for a high degree of certainty in both the qualitative and quantitative determinations. This proved particularly useful for these samples, due to the complexity of the matrix. Analyses of this type, including multiple spectroscopic confirmations, may also be useful for other complicated matrixes (e.g., biological samples) or in forensic/regulatory frameworks where data are likely to be challenged. While the source of perchlorate in these hydroponic products is not known, the perchlorate-to-nitrate concentration ratio (w/w) in the aqueous extracts is generally consistent with the historical weight percent of water soluble components in caliche, a nitrate-bearing ore found predominantly in Chile. This ore, which is the only well-established natural source of perchlorate, is mined and used, albeit minimally, as a nitrogen source in some fertilizer products.


Assuntos
Fertilizantes/análise , Percloratos/análise , Poluentes da Água/análise , Cromatografia por Troca Iônica , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Análise Espectral Raman
18.
J Environ Monit ; 4(1): 102-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11871689

RESUMO

Analytical chemistry is an important tier of environmental protection and has been traditionally linked to compliance and/or exposure monitoring activities for environmental contaminants. The adoption of the risk management paradigm has led to special challenges for analytical chemistry applied to environmental risk analysis. Namely, methods developed for regulated contaminants may not be appropriate and/or applicable to risk management scenarios. This paper contains examples of analytical chemistry applied to risk management challenges broken down by the analytical approach and analyte for some selected work in our laboratory. Specific techniques discussed include stable association complex electrospray mass spectrometry (cESI-MS), gas chromatography-mass spectrometry (GC-MS), split-flow thin cell (SPLITT) fractionation and matrix-assisted laser desorption time of flight mass spectrometry (MALDI-ToF-MS). Specific analytes include haloacetic acids (HAA9), perchlorate, bromate, triazine degradation products, metal-contaminated colloids and Cryptosporidium parvum oocysts.


Assuntos
Poluentes da Água/análise , Acetatos/análise , Animais , Coloides , Cryptosporidium parvum/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Herbicidas/análise , Espectrometria de Massas/métodos , Percloratos/análise , Medição de Risco , Compostos de Sódio/análise , Triazinas
19.
Environ Sci Technol ; 36(23): 5252-60, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12528657

RESUMO

Ohio River water was treated by settling, sand filtration, and granular activated carbon filtration. It was then irradiated by low-pressure (monochromatic) and medium-pressure (polychromatic) UV lamps to investigate the effects of UV irradiation on the extracted organic matter (EOM). When the EOM, collected by solid phase extraction cartridges, was analyzed by conventional UV spectroscopy and size exclusion chromatography (SEC), no significant changes in the EOM were revealed for various UV doses. Positive and negative electrospray ionization mass spectrometry (ESI-MS) of the EOM produced mass spectra that vary significantly with UV dose. The UV dosage conditions also appear to affect the reactivity of the EOM to subsequent chlorination. The magnitude of the spectral changes is generally greater for medium-pressure lamps than for low pressure and increases with UV exposure. Based on the observed MS peaks, the changes may be due to the presence of lignin, resulting perhaps from photooxidation and/or photo rearrangement of macromolecules in the sample. When chlorination is used for secondary disinfection, these results suggest that it may be important to consider the effects of UV irradiation on the organic matter in the water before applying UV disinfection technology to a particular source water.


Assuntos
Compostos Clorados/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfetantes/química , Monitoramento Ambiental , Filtração , Compostos Orgânicos , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Raios Ultravioleta , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa