Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Psychol Med ; 53(6): 2619-2633, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379376

RESUMO

BACKGROUND: Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes. METHODS: Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations. RESULTS: Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex. CONCLUSIONS: Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.


Assuntos
Anorexia Nervosa , Estudo de Associação Genômica Ampla , Humanos , Anorexia Nervosa/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Transcriptoma , Predisposição Genética para Doença/genética
2.
Genome Res ; 24(11): 1854-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122612

RESUMO

Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements ("bait fragments") within the captured regions and "targets" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 9/genética , Genoma Humano/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
3.
J Pathol ; 240(3): 315-328, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27512948

RESUMO

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , DNA de Neoplasias/química , DNA de Neoplasias/genética , Progressão da Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Sequência de DNA , Esferoides Celulares , Proteína Supressora de Tumor p53/genética
4.
PLoS Genet ; 10(1): e1004076, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453983

RESUMO

In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.


Assuntos
Evolução Molecular , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Esteróis/metabolismo , Dedos de Zinco/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Candida albicans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética
5.
J Pathol ; 235(4): 571-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25424858

RESUMO

Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers.


Assuntos
Adenocarcinoma Mucinoso/genética , Processamento Alternativo/genética , Neoplasias da Mama/genética , Carcinoma Papilar/genética , Mutação , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Adenocarcinoma Mucinoso/tratamento farmacológico , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Processamento Alternativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Terapia de Alvo Molecular , Fenótipo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Piranos/farmacologia , Interferência de RNA , Fatores de Processamento de RNA , Receptores de Estrogênio/metabolismo , Ribonucleoproteína Nuclear Pequena U2/antagonistas & inibidores , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Compostos de Espiro/farmacologia , Transfecção
6.
Mol Biol Evol ; 30(6): 1281-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486613

RESUMO

The Candida Gene Order Browser (CGOB) was developed as a tool to visualize and analyze synteny relationships in multiple Candida species, and to provide an accurate, manually curated set of orthologous Candida genes for evolutionary analyses. Here, we describe major improvements to CGOB. The underlying structure of the database has been changed significantly. Genomic features are now based directly on genome annotations rather than on protein sequences, which allows non-protein features such as centromere locations in Candida albicans and tRNA genes in all species to be included. The data set has been expanded to 13 species, including genomes of pathogens (C. albicans, C. parapsilosis, C. tropicalis, and C. orthopsilosis), and those of xylose-degrading species with important biotechnological applications (C. tenuis, Scheffersomyces stipitis, and Spathaspora passalidarum). Updated annotations of C. parapsilosis, C. dubliniensis, and Debaryomyces hansenii have been incorporated. We discovered more than 1,500 previously unannotated genes among the 13 genomes, ranging in size from 29 to 3,850 amino acids. Poorly conserved and rapidly evolving genes were also identified. Re-analysis of the mating type loci of the xylose degraders suggests that C. tenuis is heterothallic, whereas both Spa. passalidarum and S. stipitis are homothallic. As well as hosting the browser, the CGOB website (http://cgob.ucd.ie) gives direct access to all the underlying genome annotations, sequences, and curated orthology data.


Assuntos
Candida/genética , Bases de Dados Genéticas , Genes Fúngicos , Genoma Fúngico , Genômica/métodos , Software , Sequência de Aminoácidos , Candida/classificação , Modelos Teóricos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Interface Usuário-Computador
7.
Nat Genet ; 56(3): 458-472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351382

RESUMO

Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Prognóstico , Diferenciação Celular/genética , Fenótipo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
8.
Lancet Digit Health ; 4(8): e604-e614, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780037

RESUMO

BACKGROUND: Weight trajectories might reflect individual health status. In this study, we aimed to examine the clinical and genetic associations of adult weight trajectories using electronic health records (EHRs) in the BioMe Biobank. METHODS: We constructed four weight trajectories based on a-priori definitions of weight changes (5% or 10%) using annual weight in EHRs (stable weight, weight gain, weight loss, and weight cycle); the final weight dataset included 21 487 participants with 162 783 annual weight measures. To confirm accurate assignment of weight trajectories, we manually reviewed weight trajectory plots for 100 random individuals. We then did a hypothesis-free phenome-wide association study (PheWAS) to identify diseases associated with each weight trajectory. Next, we estimated the single-nucleotide polymorphism-based heritability (hSNP2) of weight trajectories using GCTA-GREML, and we did a hypothesis-driven analysis of anorexia nervosa and depression polygenic risk scores (PRS) on these weight trajectories, given both diseases are associated with weight changes. We extended our analyses to the UK Biobank to replicate findings from a patient population to a generally healthy population. FINDINGS: We found high concordance between manually assigned weight trajectories and those assigned by the algorithm (accuracy ≥98%). Stable weight was consistently associated with lower disease risks among those passing Bonferroni-corrected p value in our PheWAS (p≤4·4 × 10-5). Additionally, we identified an association between depression and weight cycle (odds ratio [OR] 1·42, 95% CI 1·31-1·55, p≤7·7 × 10-16). The adult weight trajectories were heritable (using 5% weight change as the cutoff: hSNP2 of 2·1%, 95% CI 0·9-3·3, for stable weight; 4·1%, 1·4-6·8, for weight gain; 5·5%, 2·8-8·2, for weight loss; and 4·7%, 2·3-7·1%, for weight cycle). Anorexia nervosa PRS was positively associated with weight loss trajectory among individuals without eating disorder diagnoses (OR1SD 1·16, 95% CI 1·07-1·26, per 1 SD higher PRS, p=0·011), and the association was not attenuated by obesity PRS. No association was found between depression PRS and weight trajectories after permutation tests. All main findings were replicated in the UK Biobank (p<0·05). INTERPRETATION: Our findings suggest the importance of considering weight from a longitudinal aspect for its association with health and highlight a crucial role of weight management during disease development and progression. FUNDING: Klarman Family Foundation, US National Institute of Mental Health (NIMH).


Assuntos
Trajetória do Peso do Corpo , Adulto , Bancos de Espécimes Biológicos , Registros Eletrônicos de Saúde , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial
9.
BMC Genomics ; 12: 628, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22192698

RESUMO

BACKGROUND: Candida parapsilosis is one of the most common causes of Candida infection worldwide. However, the genome sequence annotation was made without experimental validation and little is known about the transcriptional landscape. The transcriptional response of C. parapsilosis to hypoxic (low oxygen) conditions, such as those encountered in the host, is also relatively unexplored. RESULTS: We used next generation sequencing (RNA-seq) to determine the transcriptional profile of C. parapsilosis growing in several conditions including different media, temperatures and oxygen concentrations. We identified 395 novel protein-coding sequences that had not previously been annotated. We removed > 300 unsupported gene models, and corrected approximately 900. We mapped the 5' and 3' UTR for thousands of genes. We also identified 422 introns, including two introns in the 3' UTR of one gene. This is the first report of 3' UTR introns in the Saccharomycotina. Comparing the introns in coding sequences with other species shows that small numbers have been gained and lost throughout evolution. Our analysis also identified a number of novel transcriptional active regions (nTARs). We used both RNA-seq and microarray analysis to determine the transcriptional profile of cells grown in normoxic and hypoxic conditions in rich media, and we showed that there was a high correlation between the approaches. We also generated a knockout of the UPC2 transcriptional regulator, and we found that similar to C. albicans, Upc2 is required for conferring resistance to azole drugs, and for regulation of expression of the ergosterol pathway in hypoxia. CONCLUSION: We provide the first detailed annotation of the C. parapsilosis genome, based on gene predictions and transcriptional analysis. We identified a number of novel ORFs and other transcribed regions, and detected transcripts from approximately 90% of the annotated protein coding genes. We found that the transcription factor Upc2 role has a conserved role as a major regulator of the hypoxic response in C. parapsilosis and C. albicans.


Assuntos
Candida/genética , Hipóxia Celular , RNA Fúngico/genética , Transcrição Gênica , Genes Fúngicos
10.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509944

RESUMO

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Assuntos
Proteína de Ligação a CREB/fisiologia , Carcinogênese/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Genômica/métodos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer Ther ; 17(1): 306-315, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133620

RESUMO

Disruption of Cyclin-Dependent Kinase 12 (CDK12) is known to lead to defects in DNA repair and sensitivity to platinum salts and PARP1/2 inhibitors. However, CDK12 has also been proposed as an oncogene in breast cancer. We therefore aimed to assess the frequency and distribution of CDK12 protein expression by IHC in independent cohorts of breast cancer and correlate this with outcome and genomic status. We found that 21% of primary unselected breast cancers were CDK12 high, and 10.5% were absent, by IHC. CDK12 positivity correlated with HER2 positivity but was not an independent predictor of breast cancer-specific survival taking HER2 status into account; however, absent CDK12 protein expression significantly correlated with a triple-negative phenotype. Interestingly, CDK12 protein absence was associated with reduced expression of a number of DDR proteins including ATR, Ku70/Ku80, PARP1, DNA-PK, and γH2AX, suggesting a novel mechanism of CDK12-associated DDR dysregulation in breast cancer. Our data suggest that diagnostic IHC quantification of CDK12 in breast cancer is feasible, with CDK12 absence possibly signifying defective DDR function. This may have important therapeutic implications, particularly for triple-negative breast cancers. Mol Cancer Ther; 17(1); 306-15. ©2017 AACR.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Quinases Ciclina-Dependentes/biossíntese , Dano ao DNA , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Estudos Retrospectivos
13.
PLoS One ; 6(12): e28151, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22145027

RESUMO

Candida parapsilosis is a pathogenic fungus that is major cause of hospital-acquired infection, predominantly due to growth as biofilms on indwelling medical devices. It is related to Candida albicans, which remains the most common cause of candidiasis disease in humans. The transcription factor Bcr1 is an important regulator of biofilm formation in vitro in both C. parapsilosis and C. albicans. We show here that C. parapsilosis Bcr1 is required for in vivo biofilm development in a rat catheter model, like C. albicans. By comparing the transcription profiles of a bcr1 deletion in both species we found that regulation of expression of the CFEM family is conserved. In C. albicans, three of the five CFEM cell wall proteins (Rbt5, Pga7 and Csa1) are associated with both biofilm formation and acquisition of iron from heme, which is an important virulence characteristic. In C. parapsilosis, the CFEM family has undergone an expansion to 7 members. Expression of three genes (CFEM2, CFEM3, and CFEM6) is dependent on Bcr1, and is induced in low iron conditions. All three are involved in the acquisition of iron from heme. However, deletion of the three CFEM genes has no effect on biofilm formation in C. parapsilosis. Our data suggest that the role of the CFEM family in iron acquisition is conserved between C. albicans and C. parapsilosis, but their role in biofilm formation is not.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida/patogenicidade , Candidíase/genética , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Animais , Biomarcadores/metabolismo , Candida/metabolismo , Candidíase/patologia , Proteínas Fúngicas/antagonistas & inibidores , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa