Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(45): e202311551, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754675

RESUMO

The chalcone-flavylium photochromic system switches in aqueous media. However, the chalcone→flavylium conversion requires detrimental ultra-violet (UV) light for the switching which deters their applications in the biological domain. To address this issue, we have synthesized strategically modified chalcone scaffolds that can be reversibly switched to the flavylium forms with visible light ranging from 456 nm (blue) to 640 nm (red).

2.
J Am Chem Soc ; 144(26): 11594-11607, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749669

RESUMO

Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.


Assuntos
Cromo , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Metais , Oxirredução
3.
Chem Sci ; 15(6): 2211-2220, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332824

RESUMO

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.

4.
Chem Commun (Camb) ; 60(29): 3914-3917, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502135

RESUMO

A series of [Au(CN)4]- salts with lanthanide 2,2'-bipyridine dioxide cations features Au(III) aurophilic interactions between [Au(CN)4]- groups, with Au⋯Au distances of 3.3603(4) Šand 3.4354(4) Šthat are shorter than any previously reported. Computations predict the interactions to be weakly attractive; packing effects appear to also contribute to the close contacts. The materials are emissive: there is no Au(III)-based luminescence, but for Ln = Eu the PLQY of 29% is surprisingly high compared to related analogues.

5.
J Phys Chem Lett ; 14(33): 7433-7439, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37578893

RESUMO

The diradical character in a molecular architecture can be customized primarily in two ways: first, by employing a quinoidal pro-aromatic system with net energy gained by aromatization that compensates for the energy required to generate the diradical species and, second, by employing an antiaromatic system having easily accessible triplet states that impart a diradical character. We have chosen a 14π aromatic framework, Boekelheide's dimethyldihydropyrene, and perturbed its aromaticity through the construction of its quinoidal form. The perturbed aromaticity was evident from the bond alteration in the X-ray diffraction structure, 1H nuclear magnetic resonance chemical shifts, and quantum chemical calculations. The aromaticity was restored as the system underwent a transition to the biradical structure centered on two exocyclic carbons. In addition, upon photoexcitation and without using an external reducing reagent, the diradical could be converted to a radical anion and dianion form easily when dimethylformamide was used as a solvent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa