Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(37): 14568-14581, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35914234

RESUMO

Defect engineering, such as modification of oxygen vacancy density, has been considered as an effective approach to tailor the catalytic performance on transition-metal oxide nanostructured surfaces. The role of oxygen vacancies (OV) on the surface of the as-prepared, zinnia-shaped morphology of CuO nanostructures and their marigold forms on calcination at 800 °C has been investigated through the study of model catalytic reactions of reduction of 4-nitrophenol and aerobic oxidation of benzyl alcohol. The OV on the surfaces of different morphologies of CuO have been identified and quantified through Rietveld analysis and HRTEM, EPR, and XPS studies. The structure-activity relationships between surface oxygen vacancies (OV) and catalytic performance have been systematically investigated. The enhanced catalytic performance of the cubic CuO nanostructures compared to their as-prepared forms has been attributed to the formation of surface oxygen species on the reactive and dominant (110) surface that has low oxygen vacancy formation energy. The mechanistic role of surface oxygen species in the studied reactions has been quantitatively correlated with the catalytic activity of the different morphological forms of the CuO nanostructures.

2.
Mol Pharm ; 15(7): 2698-2713, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29787277

RESUMO

Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Engenharia Química , Receptores ErbB/metabolismo , Feminino , Ouro/química , Humanos , Nanopartículas Metálicas/química , Camundongos Nus , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Porosidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Dióxido de Silício/química , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
RSC Adv ; 8(74): 42361-42373, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35558411

RESUMO

Nitrogen and sulfur co-doped carbon dots (NSCDs) synthesized through one-pot microwave-assisted pyrolysis of tartaric acid and thioacetamide have been used as a fluorescent probe for the sensitive and selective detection of clinically important organic aldehyde cinnamaldehyde. The as-prepared NSCDs displayed blue fluorescence (∼12% quantum yield), excellent aqueous solubility along with pH and excitation wavelength dependent emission behavior. In comparison to other aldehydes (formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, hexanal, crotonaldehyde and benzaldehyde) the fluorescence intensity of NSCDs was significantly quenched in the presence of cinnamaldehyde and the reduced intensity was linearly proportional to the concentration of cinnamaldehyde in the range of 0-15 mM with a detection limit of 99.0 µM. The fluorescence quenching of NSCDs was mainly attributed to the photo-excited electron transfer between NSCDs and aldehydes which was confirmed by measuring the life-time through time-resolved luminescence spectroscopy, energy levels of NSCDs through cyclic voltammetry (CV) and energy levels of aldehydes by density functional theory (DFT) based analyses. MTT assay of the NSCDs also proved their good biocompatibility and low toxicity towards human fibroblast cells thereby validating their suitability as a biologically relevant fluorescent probe for sensing cinnamaldehyde.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa