Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 18(6): e3000715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511245

RESUMO

Zoonotic coronavirus (CoV) infections, such as those responsible for the current severe acute respiratory syndrome-CoV 2 (SARS-CoV-2) pandemic, cause grave international public health concern. In infected cells, the CoV RNA-synthesizing machinery associates with modified endoplasmic reticulum membranes that are transformed into the viral replication organelle (RO). Although double-membrane vesicles (DMVs) appear to be a pan-CoV RO element, studies to date describe an assortment of additional CoV-induced membrane structures. Despite much speculation, it remains unclear which RO element(s) accommodate viral RNA synthesis. Here we provide detailed 2D and 3D analyses of CoV ROs and show that diverse CoVs essentially induce the same membrane modifications, including the small open double-membrane spherules (DMSs) previously thought to be restricted to gamma- and delta-CoV infections and proposed as sites of replication. Metabolic labeling of newly synthesized viral RNA followed by quantitative electron microscopy (EM) autoradiography revealed abundant viral RNA synthesis associated with DMVs in cells infected with the beta-CoVs Middle East respiratory syndrome-CoV (MERS-CoV) and SARS-CoV and the gamma-CoV infectious bronchitis virus. RNA synthesis could not be linked to DMSs or any other cellular or virus-induced structure. Our results provide a unifying model of the CoV RO and clearly establish DMVs as the central hub for viral RNA synthesis and a potential drug target in CoV infection.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus/classificação , Coronavirus/fisiologia , Retículo Endoplasmático/patologia , Retículo Endoplasmático/virologia , Replicação Viral , Animais , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero
2.
PLoS Biol ; 18(12): e3001016, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347434

RESUMO

SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Ligação Viral , Substituição de Aminoácidos , Animais , Sítios de Ligação , Gatos , Bovinos , Cães , Cobaias , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Coelhos , Ratos , Zoonoses Virais/virologia
3.
J Virol ; 95(14): e0066321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33963053

RESUMO

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Assuntos
COVID-19 , Genoma Viral , Motivos de Nucleotídeos , Dobramento de RNA , RNA Viral , SARS-CoV-2/fisiologia , Replicação Viral , Animais , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
4.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021894

RESUMO

The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa/fisiologia , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus , Tropismo Viral/fisiologia , Replicação Viral/fisiologia , Animais , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
5.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974565

RESUMO

Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.


Assuntos
Autofagia , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Vacúolos/virologia , Animais , Infecções por Birnaviridae/virologia , Linhagem Celular , Embrião de Galinha , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Transdução de Sinais , Vacúolos/fisiologia , Internalização do Vírus , Liberação de Vírus , Replicação Viral
6.
J Virol ; 90(16): 7519-7528, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279618

RESUMO

UNLABELLED: During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacoronavirus and Betacoronavirus, such as severe acute respiratory syndrome coronavirus (SARS-CoV), establish host shutoff via their nonstructural protein 1 (nsp1). The Gammacoronavirus and Deltacoronavirus genomes, however, do not encode nsp1, and it has been suggested that these viruses do not induce host shutoff. Here, we show that the Gammacoronavirus infectious bronchitis virus (IBV) does induce host shutoff, and we find that its accessory protein 5b is indispensable for this function. Importantly, we found that 5b-null viruses, unlike wild-type viruses, induce production of high concentrations of type I interferon protein in vitro, indicating that host shutoff by IBV plays an important role in antagonizing the host's innate immune response. Altogether, we demonstrate that 5b is a functional equivalent of nsp1, thereby answering the longstanding question of whether lack of nsp1 in gammacoronaviruses is compensated for by another viral protein. As such, our study is a significant step forward in the understanding of coronavirus biology and closes a gap in the understanding of some IBV virulence strategies. IMPORTANCE: Many viruses inhibit protein synthesis by their host cell to enhance virus replication and to antagonize antiviral defense mechanisms. This process is referred to as host shutoff. We studied gene expression and protein synthesis in chicken cells infected with the important poultry pathogen infectious bronchitis virus (IBV). We show that IBV inhibits synthesis of host proteins, including that of type I interferon, a key component of the antiviral response. The IBV-induced host shutoff, however, does not require degradation of host RNA. Furthermore, we demonstrate that accessory protein 5b of IBV plays a crucial role in the onset of host shutoff. Our findings suggest that inhibition of host protein synthesis is a common feature of coronaviruses and primarily serves to inhibit the antiviral response of the host.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Interferon Tipo I/antagonistas & inibidores , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Galinhas , Técnicas de Inativação de Genes , Vírus da Bronquite Infecciosa/genética , Proteínas Virais/genética
7.
Avian Pathol ; 46(2): 173-180, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27624876

RESUMO

Infectious bronchitis virus (IBV) causes infectious bronchitis in poultry, a respiratory disease that is a source of major economic loss to the poultry industry. Detection and the study of the molecular pathogenesis of the virus often involve the use of real-time quantitative PCR assays (qPCR). To account for error within the experiments, the levels of target gene transcription are normalized to that of suitable reference genes. Despite publication of the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines in 2009, single un-tested reference genes are often used for normalization of qPCR assays in avian research studies. Here, we use the geNorm algorithm to identify suitable reference genes in different avian cell types during infection with apathogenic and pathogenic strains of IBV. We discuss the importance of selecting an appropriate experimental sample subset for geNorm analysis, and show the effect that this selection can have on resultant reference gene selection. The effects of inappropriate normalization on the transcription pattern of a cellular signalling gene, AKT1, and the interferon-inducible, MX1, were studied. We identify the possibility of the misinterpretation of qPCR data when an inappropriate normalization strategy is employed. This is most notable when measuring the transcription of AKT1, where changes are minimal during infection.


Assuntos
Galinhas/virologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/isolamento & purificação , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/genética , Rim/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Organismos Livres de Patógenos Específicos
8.
J Neurosci ; 35(43): 14501-16, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511242

RESUMO

Canavan disease (CD) is a severe, lethal leukodystrophy caused by deficiency in aspartoacylase (ASPA), which hydrolyzes N-acetylaspartate (NAA). In the brains of CD patients, NAA accumulates to high millimolar concentrations. The pathology of the disease is characterized by loss of oligodendrocytes and spongy myelin degeneration in the CNS. Whether accumulating NAA, absence of NAA-derived acetate, or absence of any unknown functions of the ASPA enzyme is responsible for the pathology of the disease is not fully understood. We generated ASPA-deficient (Aspa(nur7/nur7)) mice that are also deficient for NAA synthase Nat8L (Nat8L(-/-)/Aspa(nur7/nur7)). These mice have no detectable NAA. Nevertheless, they exhibited normal myelin content, myelin sphingolipid composition, and full reversal of spongy myelin and axonal degeneration. Surprisingly, although pathology was fully reversed, the survival time of the mice was not prolonged. In contrast, Aspa(nur7/nur7) mice with only one intact Nat8L allele accumulated less NAA, developed a less severe pathology, phenotypic improvements, and, importantly, an almost normal survival time. Therefore, inhibition of NAA synthase is a promising therapeutic option for CD. The reduced survival rate of Nat8L(-/-)/Aspa(nur7/nur7) mice, however, indicates that complete inhibition of NAA synthase may bear unforeseeable risks for the patient. Furthermore, we demonstrate that acetate derived from NAA is not essential for myelin lipid synthesis and that loss of NAA-derived acetate does not cause the myelin phenotype of Aspa(nur7/nur7) mice. Our data clearly support the hypothesis that NAA accumulation is the major factor in the development of CD.


Assuntos
Acetiltransferases/genética , Ácido Aspártico/análogos & derivados , Doença de Canavan/patologia , Bainha de Mielina/patologia , Acetiltransferases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/metabolismo , Axônios/patologia , Comportamento Animal , Doença de Canavan/tratamento farmacológico , Doença de Canavan/genética , Inibidores Enzimáticos/uso terapêutico , Feminino , Genótipo , Gliose/genética , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/metabolismo , Degeneração Neural/patologia , Esfingolipídeos/metabolismo , Análise de Sobrevida
9.
J Virol ; 89(2): 1156-67, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378498

RESUMO

UNLABELLED: Coronaviruses from both the Alphacoronavirus and Betacoronavirus genera interfere with the type I interferon (IFN) response in various ways, ensuring the limited activation of the IFN response in most cell types. Of the gammacoronaviruses that mainly infect birds, little is known about the activation of the host immune response. We show that the prototypical Gammacoronavirus, infectious bronchitis virus (IBV), induces a delayed activation of the IFN response in primary renal cells, tracheal epithelial cells, and a chicken cell line. In fact, Ifnß expression is delayed with respect to the peak of viral replication and the accompanying accumulation of double-stranded RNA (dsRNA). In addition, we demonstrate that MDA5 is the primary sensor for Gammacoronavirus infections in chicken cells. Furthermore, we provide evidence that accessory proteins 3a and 3b of IBV modulate the response at the transcriptional and translational levels. Finally, we show that, despite the lack of activation of the IFN response during the early phase of IBV infection, the signaling of nonself dsRNA through both MDA5 and TLR3 remains intact in IBV-infected cells. Taken together, this study provides the first comprehensive analysis of host-virus interactions of a Gammacoronavirus with avian innate immune responses. IMPORTANCE: Our results demonstrate that IBV has evolved multiple strategies to avoid the activation of the type I interferon response. Taken together, the present study closes a gap in the understanding of host-IBV interaction and paves the way for further characterization of the mechanisms underlying immune evasion strategies as well as the pathogenesis of gammacoronaviruses.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Animais , Células Cultivadas , Galinhas , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/virologia , RNA Viral/imunologia , RNA Viral/metabolismo , Receptores Imunológicos
10.
J Virol ; 89(23): 12047-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26401035

RESUMO

UNLABELLED: The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE: In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system.


Assuntos
Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/metabolismo , Interferon Tipo I/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Primers do DNA/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Vírus da Bronquite Infecciosa/genética , Luciferases , Células Vero
11.
J Gen Virol ; 96(12): 3499-3506, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27257648

RESUMO

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus infectious bronchitis virus (IBV). It was thought that coronavirus virions were composed of three major viral structural proteins until investigations of other coronaviruses showed that the virions also include viral non-structural and genus-specific accessory proteins as well as host-cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs, purified by sucrose-gradient ultracentrifugation and analysed by mass spectrometry. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus 35 additional virion-associated host proteins. The virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, while others were found to be orthologous to proteins identified in severe acute respiratory syndrome coronavirus virions and also virions from a number of other RNA and DNA viruses.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Bronquite Infecciosa/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Alantoide/virologia , Animais , Embrião de Galinha , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/ultraestrutura , Espectrometria de Massas , Proteoma , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética , Vírion/genética , Vírion/ultraestrutura
12.
Biochem J ; 461(1): 147-58, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24738593

RESUMO

Five ceramide synthases (CerS2-CerS6) are expressed in mouse skin. Although CerS3 has been shown to fulfill an essential function during skin development, neither CerS6- nor CerS2-deficient mice show an obvious skin phenotype. In order to study the role of CerS4, we generated CerS4-deficient mice (Cers4-/-) and CerS4-specific antibodies. With these biological tools we analysed the tissue distribution and determined the cell-type specific expression of CerS4 in suprabasal epidermal layers of footpads as well as in sebaceous glands of the dorsal skin. Loss of CerS4 protein leads to an altered lipid composition of the sebum, which is more solidified and therefore might cause progressive hair loss due to physical blocking of the hair canal. We also noticed a strong decrease in C20 1,2-alkane diols consistent with the decrease of wax diesters in the sebum of Cers4-/- mice. Cers4-/- mice at 12 months old display additional epidermal tissue destruction due to dilated and obstructed pilary canals. Mass spectrometric analyses additionally show a strong decrease in C20-containing sphingolipids.


Assuntos
Alopecia/enzimologia , Alopecia/etiologia , Oxirredutases/deficiência , Sebo/enzimologia , Esfingolipídeos/metabolismo , Alopecia/genética , Sequência de Aminoácidos , Animais , Progressão da Doença , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Oxirredutases/genética , Esfingolipídeos/efeitos adversos , Esfingolipídeos/genética
13.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482358

RESUMO

In the intricate environment of a cell, many studies seek to discover the location of specific events or objects of interest. Advances in microscopy in recent years have allowed for high detail views of specific areas of cells of interest using correlative light electron microscopy (CLEM). While this powerful technique allows for the correlation of a specific area of fluorescence on a confocal microscope with that same area in an electron microscope, it is most often used to study tagged proteins of interest. This method adapts the correlative method for use with antibody labelling. We have shown that some cellular structures are more sensitive than others to this process and that this can be a useful technique for laboratories where tagged proteins or viruses, or dedicated CLEM instruments are not available.

14.
J Biol Chem ; 286(29): 25922-34, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21628453

RESUMO

2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabelo/crescimento & desenvolvimento , Glândulas Sebáceas/metabolismo , Sebo/metabolismo , Alopecia/metabolismo , Alopecia/patologia , Amidoidrolases/deficiência , Animais , Proliferação de Células , Epiderme/anatomia & histologia , Epiderme/metabolismo , Cabelo/enzimologia , Masculino , Camundongos , Tamanho do Órgão , Especificidade de Órgãos , Glândulas Sebáceas/anatomia & histologia , Glândulas Sebáceas/citologia , Glândulas Sebáceas/enzimologia , Sebo/enzimologia , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Temperatura de Transição
15.
Glycobiology ; 22(1): 107-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21840969

RESUMO

The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.


Assuntos
Expressão Gênica , Células de Schwann/enzimologia , Nervo Isquiático/enzimologia , Sialiltransferases/metabolismo , Animais , Axônios/patologia , Contagem de Células , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/inervação , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/enzimologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Ácidos Siálicos/metabolismo , Sialiltransferases/genética
16.
Viruses ; 14(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016406

RESUMO

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.


Assuntos
Infecções por Coronavirus , Gammacoronavirus , Vírus da Bronquite Infecciosa , Animais , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Mutação , Células Vero
17.
Front Immunol ; 13: 867707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418984

RESUMO

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.


Assuntos
COVID-19 , Coronavirus Respiratório Porcino , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , SARS-CoV-2 , Suínos
18.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960809

RESUMO

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Assuntos
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , RNA Viral/biossíntese , Animais , Linhagem Celular , Coronavirus/classificação , Coronavirus/crescimento & desenvolvimento , Citoplasma/metabolismo , Humanos , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/metabolismo , RNA de Cadeia Dupla/metabolismo , Compartimentos de Replicação Viral/metabolismo
19.
Hum Mutat ; 31(4): E1251-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20104589

RESUMO

Hereditary spastic paraplegia (HSP) describes a heterogeneous group of inherited neurodegenerative disorders in which the cardinal pathological feature is upper motor neurone degeneration leading to progressive spasticity and weakness of the lower limbs. Using samples from a large Omani family we recently mapped a gene for a novel autosomal recessive form of HSP (SPG35) in which the spastic paraplegia was associated with intellectual disability and seizures. Magnetic resonance imaging of the brain of SPG35 patients showed white matter abnormalities suggestive of a leukodystrophy. Here we report homozygous mutations in the fatty acid 2-hydroxylase gene (FA2H) in the original family used to define the SPG35 locus (p.Arg235Cys) as well as in a previously unreported Pakistani family with a similar phenotype (p.Arg53_Ile58del). Measurement of enzyme activity in vitro revealed significantly reduced enzymatic function of FA2H associated with these mutations. These results demonstrate that mutations in FA2H are associated with SPG35, and that abnormal hydroxylation of myelin galactocerebroside lipid components can lead to a severe progressive phenotype, with a clinical presentation of complicated HSP and radiological features of leukodystrophy. (c) 2010 Wiley-Liss, Inc.


Assuntos
Oxigenases de Função Mista/genética , Mutação/genética , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Animais , Encéfalo/patologia , Células CHO , Criança , Pré-Escolar , Cromatografia em Camada Fina , Consanguinidade , Cricetinae , Cricetulus , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Linhagem , Gravidez , Transfecção
20.
Methods Mol Biol ; 2203: 135-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833210

RESUMO

Several techniques are currently available to quickly and accurately quantify the number of virus particles in a sample, taking advantage of advanced technologies improving old techniques or generating new ones, generally relying on partial detection methods or structural analysis. Therefore, characterization of virus infectivity in a sample is often essential, and classical virological methods are extremely powerful in providing accurate results even in an old-fashioned way. In this chapter, we describe in detail the techniques routinely used to estimate the number of viable infectious coronavirus particles in a given sample. All these techniques are serial dilution assays, also known as titrations or end-point dilution assays (EPDA).


Assuntos
Coronavirus/patogenicidade , Ensaio de Placa Viral/métodos , Animais , Células Cultivadas , Coronavirus/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Traqueia/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa