Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7689, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227575

RESUMO

Controlling the succession of chemical processes with high specificity in complex systems is advantageous for widespread applications, from biomedical research to drug manufacturing. Despite synthetic advances in bioorthogonal and photochemical methodologies, there is a need for generic chemical approaches that can universally modulate photodynamic reactivity in organic photosensitizers. Herein we present a strategy to fine-tune the production of singlet oxygen in multiple photosensitive scaffolds under the activation of bioresponsive and bioorthogonal stimuli. We demonstrate that the photocatalytic activity of nitrobenzoselenadiazoles can be fully blocked by site-selective incorporation of electron-withdrawing carbamate moieties and restored on demand upon uncaging with a wide range of molecular triggers, including abiotic transition-metal catalysts. We also prove that this strategy can be expanded to most photosensitizers, including diverse structures and spectral properties. Finally, we show that such advanced control of singlet oxygen generation can be broadly applied to the photodynamic ablation of human cells as well as to regulate the release of singlet oxygen in the semi-synthesis of natural product drugs.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Catálise/efeitos da radiação , Fotoquimioterapia/métodos , Carbamatos/química , Células HeLa
2.
Free Radic Biol Med ; 188: 287-297, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753585

RESUMO

5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation. The macrophages also change their metabolism by reducing mitochondrial import of acyl-carnitines, intermediates of fatty acid metabolism, driving glucose import. Moreover, 5-MTP increases the endocytosis of collagen by macrophages, and experiments with inhibition of glucose uptake showed that this is a direct result of their altered metabolism. However, 5-MTP does not affect the macrophages following pathogenic stimulation, due to 5-MTP degradation by induced expression of indole-amine oxygenase-1 (IDO-1). Thus, 5-MTP is a fibrosis-protective metabolite that, in absence of pathogenic stimulation, promotes collagen uptake by anti-inflammatory macrophages by altering the physicochemical properties of their mitochondrial membranes.


Assuntos
Macrófagos , Triptofano , Colágeno/metabolismo , Fibrose , Humanos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa