Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 130(5): 655-661, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917345

RESUMO

Asymmetry of arm swing (AS) has been described as a characteristic of normal physiological gait. In patients with Parkinson's disease (PWPD), a one-sided reduction of AS can occur already as a prodromal symptom. There is limited evidence regarding AS in PWPD, but a growing interest in AS as a focus of exercise therapy. The differences of AS between 32 healthy subjects (HS) and 36 mildly-to-moderately impaired PWPD were assessed in overground walking at various gait speeds. Assessments were carried out with a sensor-based gait measurement system over a 40 m walk in very slow, slow, preferred, fast, and very fast gait speed. Longitudinal and AS kinematics were compared with ANOVA function and regression analysis. PWPD exhibited a one-sided reduction of AS compared to HS at normal, fast, and very fast walking. AS coordination, representing the timing of reciprocity of right and left AS, was reduced in PWPD in very slow and normal walking. With respect to leg movements, PWPD exhibited an increase in stride time variability in very slow gait. There were no group differences for cadence, stride length, and gait velocity. This study informs about the kinematics of AS at various gait velocities ranging from very slow to very fast in mildly-to-moderately impaired PWPD. Reduced one-sided AS can be considered as a very early sign of parkinsonian gait disturbance that precedes alterations of locomotive leg movements and improves at faster gait speeds.


Assuntos
Doença de Parkinson , Humanos , Braço/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Movimento , Fenômenos Biomecânicos
3.
Mov Disord Clin Pract ; 8(8): 1240-1247, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761058

RESUMO

BACKGROUND: Reduction of arm swing during gait is an early and common symptom in Parkinson's disease (PD). By using the technology of a mobile phone, acceleration of arm swing can be converted into a closed-loop musical feedback (musification) to improve gait. OBJECTIVES: To assess arm swing in healthy subjects and the effects of musification on arm swing amplitude and other gait parameters in patients with PD. METHODS: Gait kinematics were analyzed in 30 patients during a 320 m walk in 3 different conditions comprising (1) normal walking; (2) focused swinging of the more affected arm; and (3) with musification of arm swing provided by the iPhone application CuraSwing. The acceleration of arm swing was converted into musical feedback. Arm swing range of motion and further gait kinematics were analyzed. In addition, arm swing in patients was compared to 32 healthy subjects walking at normal, slow, and fast speeds. RESULTS: Musification led to a large and bilateral increase of arm swing range of motion in patients. The increase was greater on the more affected side of the patient (+529.5% compared to baseline). In addition, symmetry of arm swing, sternum rotation, and stride length increased. With musical feedback patients with PD reached arm swing movements within or above the range of healthy subjects. CONCLUSIONS: Musification has an immediate effect on arm swing and other gait kinematics in PD. The results suggest that closed-loop musical feedback is an effective technique to improve walking in patients with PD.

4.
Front Neurol ; 9: 755, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271375

RESUMO

The use of functional music in gait training termed rhythmic auditory stimulation (RAS) and treadmill training (TT) have both been shown to be effective in stroke patients (SP). The combination of RAS and treadmill training (RAS-TT) has not been clinically evaluated to date. The aim of the study was to evaluate the efficacy of RAS-TT on functional gait in SP. The protocol followed the design of an explorative study with a rater-blinded three arm prospective randomized controlled parallel group design. Forty-five independently walking SP with a hemiparesis of the lower limb or an unsafe and asymmetrical walking pattern were recruited. RAS-TT was carried out over 4 weeks with TT and neurodevelopmental treatment based on Bobath approach (NDT) serving as control interventions. For RAS-TT functional music was adjusted individually while walking on the treadmill. Pre and post-assessments consisted of the fast gait speed test (FGS), a gait analysis with the locometre (LOC), 3 min walking time test (3MWT), and an instrumental evaluation of balance (IEB). Raters were blinded to group assignments. An analysis of covariance (ANCOVA) was performed with affiliated measures from pre-assessment and time between stroke and start of study as covariates. Thirty-five participants (mean age 63.6 ± 8.6 years, mean time between stroke and start of study 42.1 ± 23.7 days) completed the study (11 RAS-TT, 13 TT, 11 NDT). Significant group differences occurred in the FGS for adjusted post-measures in gait velocity [F (2, 34) = 3.864, p = 0.032; partial η2 = 0.205] and cadence [F (2, 34) = 7.656, p = 0.002; partial η2 = 0.338]. Group contrasts showed significantly higher values for RAS-TT. Stride length results did not vary between the groups. LOC, 3MWT, and IEB did not indicate group differences. One patient was withdrawn from TT because of pain in one arm. The study provides first evidence for a higher efficacy of RAS-TT in comparison to the standard approaches TT and NDT in restoring functional gait in SP. The results support the implementation of functional music in neurological gait rehabilitation and its use in combination with treadmill training. Clinical Trial Registration: https://www.drks.de/drks_web/, identifier DRKS00014603.

5.
Sci Rep ; 7: 42005, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233776

RESUMO

Training based on rhythmic auditory stimulation (RAS) can improve gait in patients with idiopathic Parkinson's disease (IPD). Patients typically walk faster and exhibit greater stride length after RAS. However, this effect is highly variable among patients, with some exhibiting little or no response to the intervention. These individual differences may depend on patients' ability to synchronize their movements to a beat. To test this possibility, 14 IPD patients were submitted to RAS for four weeks, in which they walked to music with an embedded metronome. Before and after the training, patients' synchronization was assessed with auditory paced hand tapping and walking to auditory cues. Patients increased gait speed and stride length in non-cued gait after training. However, individual differences were apparent as some patients showed a positive response to RAS and others, either no response, or a negative response. A positive response to RAS was predicted by the synchronization performance in hand tapping and gait tasks. More severe gait impairment, low synchronization variability, and a prompt response to a stimulation change foster a positive response to RAS training. Thus, sensorimotor timing skills underpinning the synchronization of steps to an auditory cue may allow predicting the success of RAS in IPD.


Assuntos
Estimulação Acústica/métodos , Terapia por Exercício/métodos , Marcha , Destreza Motora , Música , Doença de Parkinson/reabilitação , Periodicidade , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reabilitação Neurológica/métodos , Doença de Parkinson/fisiopatologia , Distribuição Aleatória
6.
Front Hum Neurosci ; 8: 494, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071522

RESUMO

It is well established that auditory cueing improves gait in patients with idiopathic Parkinson's disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients' performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

7.
Front Psychol ; 6: 1547, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500596
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa